Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven P. Lee is active.

Publication


Featured researches published by Steven P. Lee.


Immunity | 1997

Human CD8+ T Cell Responses to EBV EBNA1: HLA Class I Presentation of the (Gly-Ala)–Containing Protein Requires Exogenous Processing

Neil Blake; Steven P. Lee; Irina Redchenko; Wendy A. Thomas; Neil Steven; Alison M. Leese; Patty M. Steigerwald-Mullen; Michael G. Kurilla; Lori Frappier; Alan B. Rickinson

Epstein-Barr virus (EBV)-induced cytotoxic T lymphocyte (CTL) responses have been detected against many EBV antigens but not the nuclear antigen EBNA1; this has been attributed to the presence of a glycine-alanine repeat (GAr) domain in the protein. Here we describe the isolation of human CD8+ CTL clones recognizing EBNA1-specific peptides in the context of HLA-B35.01 and HLA-A2.03. Using these clones, we show that full-length EBNA1 is not presented when expressed endogenously in target cells, whereas the GAr-deleted form is presented efficiently. However, when supplied as an exogenous antigen, the full-length protein can be presented on HLA class I molecules by a TAP-independent pathway; this may explain how EBNA1-specific CTLs are primed in vivo.


Journal of Experimental Medicine | 2004

CD8 T Cell Recognition of Endogenously Expressed Epstein-Barr Virus Nuclear Antigen 1

Steven P. Lee; Jill M. Brooks; Hatim Al-Jarrah; Wendy A. Thomas; Tracey A. Haigh; Graham S. Taylor; Sibille Humme; Aloys Schepers; Wolfgang Hammerschmidt; John L. Yates; Alan B. Rickinson; Neil Blake

The Epstein-Barr virus (EBV) nuclear antigen (EBNA)1 contains a glycine-alanine repeat (GAr) domain that appears to protect the antigen from proteasomal breakdown and, as measured in cytotoxicity assays, from major histocompatibility complex (MHC) class I–restricted presentation to CD8+ T cells. This led to the concept of EBNA1 as an immunologically silent protein that although unique in being expressed in all EBV malignancies, could not be exploited as a CD8 target. Here, using CD8+ T cell clones to native EBNA1 epitopes upstream and downstream of the GAr domain and assaying recognition by interferon γ release, we show that the EBNA1 naturally expressed in EBV-transformed lymphoblastoid cell lines (LCLs) is in fact presented to CD8+ T cells via a proteasome/peptide transporter–dependent pathway. Furthermore, LCL recognition by such CD8+ T cells, although slightly lower than seen with paired lines expressing a GAr-deleted EBNA1 protein, leads to strong and specific inhibition of LCL outgrowth in vitro. Endogenously expressed EBNA1 is therefore accessible to the MHC class I pathway despite GAr-mediated stabilization of the mature protein. We infer that EBNA1-specific CD8+ T cells do play a role in control of EBV infection in vivo and might be exploitable in the control of EBV+ malignancies.


Journal of Immunology | 2001

Targeting antigen in mature dendritic cells for simultaneous stimulation of CD4+ and CD8+ T cells

Chiara Bonini; Steven P. Lee; S.R. Riddell; Philip D. Greenberg

Due to their potent immunostimulatory capacity, dendritic cells (DC) have become the centerpiece of many vaccine regimens. Immature DC (DCimm) capture, process, and present Ags to CD4+ lymphocytes, which reciprocally activate DCimm through CD40, and the resulting mature DC (DCmat) loose phagocytic capacity, but acquire the ability to efficiently stimulate CD8+ lymphocytes. Recombinant vaccinia viruses (rVV) provide a rapid, easy, and efficient method to introduce Ags into DC, but we observed that rVV infection of DCimm results in blockade of DC maturation in response to all activation signals, including CD40L, monocyte-conditioned medium, LPS, TNF-α, and poly(I:C), and failure to induce a CD8+ response. By contrast, DCmat can be infected with rVV and induce a CD8+ response, but, having lost phagocytic activity, fail to process the Ag via the exogenous class II pathway. To overcome these limitations, we used the CMV protein pp65 as a model Ag and designed a gene containing the lysosomal-associated membrane protein 1 targeting sequence (Sig-pp65-LAMP1) to target pp65 to the class II compartment. DCmat infected with rVV-Sig-pp65-LAMP1 induced proliferation of pp65-specific CD4+ clones and efficiently induced a pp65-specific CD4+ response, suggesting that after DC maturation the intracellular processing machinery for class II remains intact for at least 16 h. Moreover, infection of DCmat with rVV-Sig-pp65-LAMP1 resulted in at least equivalent presentation to CD8+ cells as infection with rVV-pp65. These results demonstrate that despite rVV interference with DCimm maturation, a single targeting vector can deliver Ags to DCmat for the effective simultaneous stimulation of both CD4+ and CD8+ cells.


Journal of Immunology | 2000

CTL Control of EBV in Nasopharyngeal Carcinoma (NPC): EBV-Specific CTL Responses in the Blood and Tumors of NPC Patients and the Antigen-Processing Function of the Tumor Cells

Steven P. Lee; Anthony T.C. Chan; Siu Tim Cheung; Wendy A. Thomas; Debbie Croom-Carter; Christopher W. Dawson; Ching Hwa Tsai; Sing Fai Leung; Philip J. Johnson; Dolly P. Huang

Undifferentiated nasopharyngeal carcinoma (NPC) is latently infected with EBV and expresses a restricted number of viral proteins. Studies in healthy virus carriers have demonstrated that at least some of these proteins can act as targets for HLA class I-restricted CTLs. Therefore we have explored the possibility of a CTL-based therapy for NPC by characterizing EBV-specific CTL responses in 10 newly diagnosed NPC cases and 21 healthy virus carriers from Southeast Asia. Using the autologous EBV-transformed lymphoblastoid cell line, virus-specific CTL were reactivated in vitro from PBMC, cloned, and screened for cytotoxicity against target cells expressing individual EBV proteins from recombinant vaccinia vectors. EBV-specific CTLs were identified in 6 of 10 patients and 14 of 21 controls and mainly targeted the EBV nuclear Ag 3 (EBNA3) family of viral latent proteins. However, in 3 of 10 patients and 11 of 21 controls, CTLs specific for the NPC-associated protein LMP2 were also detected, albeit at low frequency. EBV-specific CTLs were detected in tumor biopsy material obtained from 3 of 6 of the patients, indicating that functional CTL are present at the tumor site, but none was specific for tumor-associated viral proteins. To assess the Ag-presenting function in NPC we studied two NPC-derived cell lines (C15 and c666.1) and demonstrated that both were capable of processing and presenting endogenously synthesized protein to HLA class I-restricted CTL clones. Overall, our data provide a sound theoretical basis for therapeutic strategies that aim to boost or elicit LMP2-specific CTL responses in NPC patients.


Journal of Virology | 2005

CD4+ T-Cell Responses to Epstein-Barr Virus (EBV) Latent-Cycle Antigens and the Recognition of EBV-Transformed Lymphoblastoid Cell Lines

Heather M. Long; Tracey A. Haigh; Nancy H. Gudgeon; Ann M. Leen; Chi Tsang; Jill M. Brooks; Elise Landais; Elisabeth Houssaint; Steven P. Lee; Alan B. Rickinson; Graham S. Taylor

ABSTRACT There is considerable interest in the potential of Epstein-Barr virus (EBV) latent antigen-specific CD4+ T cells to act as direct effectors controlling EBV-induced B lymphoproliferations. Such activity would require direct CD4+ T-cell recognition of latently infected cells through epitopes derived from endogenously expressed viral proteins and presented on the target cell surface in association with HLA class II molecules. It is therefore important to know how often these conditions are met. Here we provide CD4+ epitope maps for four EBV nuclear antigens, EBNA1, -2, -3A, and -3C, and establish CD4+ T-cell clones against 12 representative epitopes. For each epitope we identify the relevant HLA class II restricting allele and determine the efficiency with which epitope-specific effectors recognize the autologous EBV-transformed B-lymphoblastoid cell line (LCL). The level of recognition measured by gamma interferon release was consistent among clones to the same epitope but varied between epitopes, with values ranging from 0 to 35% of the maximum seen against the epitope peptide-loaded LCL. These epitope-specific differences, also apparent in short-term cytotoxicity and longer-term outgrowth assays on LCL targets, did not relate to the identity of the source antigen and could not be explained by the different functional avidities of the CD4+ clones; rather, they appeared to reflect different levels of epitope display at the LCL surface. Thus, while CD4+ T-cell responses are detectable against many epitopes in EBV latent proteins, only a minority of these responses are likely to have therapeutic potential as effectors directly recognizing latently infected target cells.


British Journal of Cancer | 2007

Increase in circulating Foxp3+CD4+CD25high regulatory T cells in nasopharyngeal carcinoma patients

Kin Mang Lau; Suk Hang Cheng; Kwok Wai Lo; S. A. K. W. Lee; John K. S. Woo; C. A. van Hasselt; Steven P. Lee; A. B. Rickinson; Margaret H.L. Ng

Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus-associated disease with high prevalence in Southern Chinese. Using multiparametric flow cytometry, we identified significant expansions of circulating naïve and memory CD4+CD25high T cells in 56 NPC patients compared with healthy age- and sex-matched controls. These were regulatory T cells (Treg), as they overexpressed Foxp3 and GITR, and demonstrated enhanced suppressive activities against autologous CD4+CD25− T-cell proliferation in functional studies on five patients. Abundant intraepithelial infiltrations of Treg with very high levels of Foxp3 expression and absence of CCR7 expression were also detected in five primary tumours. Our current study is the first to demonstrate an expansion of functional Treg in the circulation of NPC patients and the presence of infiltrating Treg in the tumour microenvironment. As Treg may play an important role in suppressing antitumour immunity, our findings provide critical insights for clinical management of NPC.


Journal of Virology | 2004

Dual Stimulation of Epstein-Barr Virus (EBV)-Specific CD4+- and CD8+-T-Cell Responses by a Chimeric Antigen Construct: Potential Therapeutic Vaccine for EBV-Positive Nasopharyngeal Carcinoma

Graham S. Taylor; Tracey A. Haigh; Nancy H. Gudgeon; R. J. Phelps; Steven P. Lee; Neil Steven; Alan B. Rickinson

ABSTRACT Virus-associated malignancies are potential targets for immunotherapeutic vaccines aiming to stimulate T-cell responses against viral antigens expressed in tumor cells. Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma, a high-incidence tumor in southern China, expresses a limited set of EBV proteins, including the nuclear antigen EBNA1, an abundant source of HLA class II-restricted CD4+ T-cell epitopes, and the latent membrane protein LMP2, a source of subdominant CD8+ T-cell epitopes presented by HLA class I alleles common in the Chinese population. We used appropriately modified gene sequences from a Chinese EBV strain to generate a modified vaccinia virus Ankara recombinant, MVA-EL, expressing the CD4 epitope-rich C-terminal domain of EBNA1 fused to full-length LMP2. The endogenously expressed fusion protein EL is efficiently processed via the HLA class I pathway, and MVA-EL-infected dendritic cells selectively reactivate LMP2-specific CD8+ memory T-cell responses from immune donors in vitro. Surprisingly, endogenously expressed EL also directly accesses the HLA class II presentation pathway and, unlike endogenously expressed EBNA1 itself, efficiently reactivates CD4+ memory T-cell responses in vitro. This unscheduled access to the HLA class II pathway is coincident with EL-mediated redirection of the EBNA1 domain from its native nuclear location to dense cytoplasmic patches. Given its immunogenicity to both CD4+ and CD8+ T cells, MVA-EL has potential as a therapeutic vaccine in the context of nasopharyngeal carcinoma.


Current Opinion in Immunology | 1996

Cytotoxic T lymphocyte responses to Epstein-Barr virus

Alan B. Rickinson; Steven P. Lee; Neil Steven

Epstein-Barr virus induces a potent cytotoxic T lymphocyte response in man that is preferentially directed towards a particular subset of the virus latent cycle antigens; the immunodominance of these proteins, apparent in both primary and memory responses, may reflect some differential access to the HLA class I processing pathway. Effector cells recognizing these immunodominant antigens can reverse the growth of virus-induced lymphoproliferative lesions in immunosuppressed patients; however, responses to some of the subdominant latent proteins will be needed to target other virus-positive tumours.


Proceedings of the National Academy of Sciences of the United States of America | 2002

MYC overexpression imposes a nonimmunogenic phenotype on Epstein–Barr virus-infected B cells

Martin S. Staege; Steven P. Lee; Teresa Frisan; Josef Mautner; Siegfried Scholz; Alexander Pajic; Alan B. Rickinson; Maria G. Masucci; Axel Polack; Georg W. Bornkamm

Lymphoblastoid cell lines, generated by immortalization of normal B cells by Epstein–Barr virus (EBV) in vitro, have strong antigen-presenting capacity, are sensitive to EBV-specific cytotoxic T cells, and are highly allostimulatory in mixed lymphocyte culture. By contrast, EBV-positive Burkitt lymphoma (BL) cells are poor antigen presenters, are not recognized by EBV-specific cytotoxic T cells, and are poorly allostimulatory, which raises the question of whether immunological pressure exerted during BL pathogenesis in vivo has selected for a ‘nonimmunogenic’ tumor phenotype. The present work addresses this question by examining the immunogenicity/antigenicity of cell lines, generated by conversion of a conditionally immortalized lymphoblastoid cell line to permanent growth independent of EBV-latent proteins by introduction of a constitutively active or tetracycline-regulated c-myc gene (A1 and P493–6 cells, respectively). Compared with its parental lymphoblastoid cell line, A1 cells showed many of the features of the nonimmunogenic BL phenotype, namely poor allostimulatory activity, poor antigen-presenting function associated with impaired proteasomal activity, down-regulation of peptide transporter, reduced HLA class I expression, and an inability to present endogenously expressed EBV-latent proteins to cytotoxic T cells. P493–6 cells, when grown in the presence of estrogen with the exogenous c-myc gene switched off, were strongly immunogenic. The cells had lost their immunogenic potential, however, when grown on a c-myc-driven proliferation program in the absence of estrogen. Deregulation of c-myc, a step central to the development of uncontrolled BL cell growth in vivo, can thus impose a nonimmunogenic phenotype on proliferating human B cells in the absence of any immune pressure.


Gene Therapy | 2008

Retroviral transfer of a dominant TCR prevents surface expression of a large proportion of the endogenous TCR repertoire in human T cells

Daniel P. Hart; Sa Xue; Sharyn Thomas; Michela Cesco-Gaspere; Tranter A; Benjamin E. Willcox; Steven P. Lee; Neil Steven; Emma Morris; Hans J. Stauss

The latent membrane protein-2 (LMP2) of Epstein–Barr virus is a potential target for T-cell receptor (TCR) gene therapy of Hodgkin lymphoma and nasopharyngeal carcinoma. Here, we modified a human leukocyte antigen-A2-restricted, LMP2-specific TCR to achieve efficient expression following retroviral TCR gene transfer. The unmodified TCR was poorly expressed in primary human T cells, suggesting that it competed inefficiently with endogenous TCR chains for cell surface expression. In order to improve this TCR, we replaced the human constant region with murine sequences, linked the two TCR genes using a self-cleaving 2A sequence and finally, codon optimized the TCR-α-2A-β cassette for efficient translation in human cells. Retroviral transfer of the modified TCR resulted in efficient surface expression and HLA-A2/LMP2 pentamer binding. The transduced cells showed peptide-specific interferon-γ and interleukin-2 production and killed target cells displaying the LMP2 peptide. Importantly, the introduced LMP2-TCR suppressed the cell surface expression of a large proportion of endogenous TCR combinations present in primary human T cells. The design of dominant TCR is likely to improve TCR gene therapy by reducing the risk of potential autoreactivity of endogenous and mispaired TCR combinations.

Collaboration


Dive into the Steven P. Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Steven

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lee Machado

University of Leicester

View shared research outputs
Top Co-Authors

Avatar

Neil Blake

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Paul Moss

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick Chen

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge