Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Barthel is active.

Publication


Featured researches published by Steven R. Barthel.


Expert Opinion on Therapeutic Targets | 2007

Targeting selectins and selectin ligands in inflammation and cancer

Steven R. Barthel; Jacyln D Gavino; Leyla Descheny; Charles J. Dimitroff

Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone–skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein–lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.


Cell | 2015

Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth

Sonja Kleffel; Christian Posch; Steven R. Barthel; Hansgeorg Mueller; Christoph Schlapbach; Emmanuella Guenova; C.P. Elco; Nayoung Lee; Vikram R. Juneja; Qian Zhan; Christine G. Lian; Rahel Thomi; Wolfram Hoetzenecker; Antonio Cozzio; Reinhard Dummer; Martin C. Mihm; Keith T. Flaherty; Markus H. Frank; George F. Murphy; Arlene H. Sharpe; Thomas S. Kupper; Tobias Schatton

Therapeutic antibodies targeting programmed cell death 1 (PD-1) activate tumor-specific immunity and have shown remarkable efficacy in the treatment of melanoma. Yet, little is known about tumor cell-intrinsic PD-1 pathway effects. Here, we show that murine and human melanomas contain PD-1-expressing cancer subpopulations and demonstrate that melanoma cell-intrinsic PD-1 promotes tumorigenesis, even in mice lacking adaptive immunity. PD-1 inhibition on melanoma cells by RNAi, blocking antibodies, or mutagenesis of melanoma-PD-1 signaling motifs suppresses tumor growth in immunocompetent, immunocompromised, and PD-1-deficient tumor graft recipient mice. Conversely, melanoma-specific PD-1 overexpression enhances tumorigenicity, as does engagement of melanoma-PD-1 by its ligand, PD-L1, whereas melanoma-PD-L1 inhibition or knockout of host-PD-L1 attenuate growth of PD-1-positive melanomas. Mechanistically, the melanoma-PD-1 receptor modulates downstream effectors of mTOR signaling. Our results identify melanoma cell-intrinsic functions of the PD-1:PD-L1 axis in tumor growth and suggest that blocking melanoma-PD-1 might contribute to the striking clinical efficacy of anti-PD-1 therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking

Steven R. Barthel; Georg K. Wiese; Jaehyung Cho; Matthew J. Opperman; Danielle L. Hays; Javed Siddiqui; Kenneth J. Pienta; Bruce Furie; Charles J. Dimitroff

How cancer cells bind to vascular surfaces and extravasate into target organs is an underappreciated, yet essential step in metastasis. We postulate that the metastatic process involves discrete adhesive interactions between circulating cancer cells and microvascular endothelial cells. Sialyl Lewis X (sLeX) on prostate cancer (PCa) cells is thought to promote metastasis by mediating PCa cell binding to microvascular endothelial (E)-selectin. Yet, regulation of sLeX and related E-selectin ligand expression in PCa cells is a poorly understood factor in PCa metastasis. Here, we describe a glycobiological mechanism regulating E-selectin-mediated adhesion and metastatic potential of PCa cells. We demonstrate that α1,3 fucosyltransferases (FT) 3, 6, and 7 are markedly elevated in bone- and liver-metastatic PCa and dictate synthesis of sLeX and E-selectin ligands on metastatic PCa cells. Upregulated FT3, FT6, or FT7 expression induced robust PCa PC-3 cell adhesion to bone marrow (BM) endothelium and to inflamed postcapillary venules in an E-selectin-dependent manner. Membrane proteins, CD44, carcinoembryonic antigen (CEA), podocalyxin-like protein (PCLP), and melanoma cell adhesion molecule (MCAM) were major scaffolds presenting E-selectin-binding determinants on FT-upregulated PC-3 cells. Furthermore, elevated FT7 expression promoted PC-3 cell trafficking to and retention in BM through an E-selectin dependent event. These results indicate that α1,3 FTs could enhance metastatic efficiency of PCa by triggering an E-selectin-dependent trafficking mechanism.


Journal of Immunology | 2012

Galectin-1 Triggers an Immunoregulatory Signature in Th Cells Functionally Defined by IL-10 Expression

Filiberto Cedeno-Laurent; Matthew J. Opperman; Steven R. Barthel; Vijay K. Kuchroo; Charles J. Dimitroff

Galectin-1 (Gal-1), a β-galactoside–binding protein, can alter fate and effector function of Th cells; however, little is known about how Gal-1 induces Th cell differentiation. In this article, we show that both uncommitted and polarized Th cells bound by Gal-1 expressed an immunoregulatory signature defined by IL-10. IL-10 synthesis was stimulated by direct Gal-1 engagement to cell surface glycoproteins, principally CD45, on activated Th cells and enhanced by IL-21 expression through the c-Maf/aryl hydrocarbon receptor pathway, independent of APCs. Gal-1–induced IL-10+ T cells efficiently suppressed T cell proliferation and T cell-mediated inflammation and promoted the establishment of cancer immune-privileged sites. Collectively, these findings show how Gal-1 functions as a major glycome determinant regulating Th cell development, inflammation, and tumor immunity.


Journal of Biological Chemistry | 2011

Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation.

Steven R. Barthel; Aristotelis Antonopoulos; Filiberto Cedeno-Laurent; Lana Schaffer; Gilberto Hernandez; Shilpa A. Patil; Simon J. North; Anne Dell; Khushi L. Matta; Sriram Neelamegham; Stuart M. Haslam; Charles J. Dimitroff

Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLeX), and related lectin ligands on effector leukocytes. Based on anti-sLeX antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLeX formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLeX (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLeX structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLeX on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis.


Journal of Immunology | 2010

Development of a Nascent Galectin-1 Chimeric Molecule for Studying the Role of Leukocyte Galectin-1 Ligands and Immune Disease Modulation

Filiberto Cedeno-Laurent; Steven R. Barthel; Matthew J. Opperman; David M. Lee; Rachael A. Clark; Charles J. Dimitroff

Galectin-1 (Gal-1), a β-galactoside–binding lectin, plays a profound role in modulating adaptive immune responses by altering the phenotype and fate of T cells. Experimental data showing recombinant Gal-1 (rGal-1) efficacy on T cell viability and cytokine production, nevertheless, is controversial due to the necessity of using stabilizing chemicals to help retain Gal-1 structure and function. To address this drawback, we developed a mouse Gal-1 human Ig chimera (Gal-1hFc) that did not need chemical stabilization for Gal-1 ligand recognition, apoptosis induction, and cytokine modulation in a variety of leukocyte models. At high concentrations, Gal-1hFc induced apoptosis in Gal-1 ligand+ Th1 and Th17 cells, leukemic cells, and granulocytes from synovial fluids of patients with rheumatoid arthritis. Importantly, at low, more physiologic concentrations, Gal-1hFc retained its homodimeric form without losing functionality. Not only did Gal-1hFc–binding trigger IL-10 and Th2 cytokine expression in activated T cells, but members of the CD28 family and several other immunomodulatory molecules were upregulated. In a mouse model of contact hypersensitivity, we found that a non-Fc receptor-binding isoform of Gal-1hFc, Gal-1hFc2, alleviated T cell-dependent inflammation by increasing IL-4+, IL-10+, TGF-β+, and CD25high/FoxP3+ T cells, and by decreasing IFN-γ+ and IL-17+ T cells. Moreover, in human skin-resident T cell cultures, Gal-1hFc diminished IL-17+ T cells and increased IL-4+ and IL-10+ T cells. Gal-1hFc will not only be a useful new tool for investigating the role of Gal-1 ligands in leukocyte death and cytokine stimulation, but for studying how Gal-1–Gal-1 ligand binding shapes the intensity of immune responses.


Cancer Research | 2013

Definition of Molecular Determinants of Prostate Cancer Cell Bone Extravasation

Steven R. Barthel; Danielle L. Hays; Erika M. Yazawa; Matthew J. Opperman; Kempland C. Walley; Leonardo Nimrichter; Monica M. Burdick; Bryan M. Gillard; Michael T. Moser; Klaus Pantel; Barbara A. Foster; Kenneth J. Pienta; Charles J. Dimitroff

Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via β1, β4, and αVβ3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and β1 and αVβ3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that β1 was markedly upregulated compared with expression of other β subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as β1, αVβ3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, β1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, β1 and αVβ3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.


Glycobiology | 2008

Analysis of glycosyltransferase expression in metastatic prostate cancer cells capable of rolling activity on microvascular endothelial (E)-selectin

Steven R. Barthel; Jacyln D Gavino; Georg K. Wiese; Jennifer M Jaynes; Javed Siddiqui; Charles J. Dimitroff

Prostate cancer (PCa) cell tethering and rolling on microvascular endothelium has been proposed to promote the extravasation of PCa cells. We have shown that these adhesive events are mediated through binding interactions between endothelial (E)-selectin and Lewis carbohydrates on PCa cells. Prior data indicate that E-selectin-mediated rolling of bone-metastatic PCa MDA PCa 2b (MDA) cells is dependent on sialyl Lewis X (sLe(X))-bearing glycoproteins. To explore the molecular basis of sLe(X) synthesis and E-selectin ligand (ESL) activity on PCa cells, we compared and contrasted the expression level of glycosyltransferases, characteristically involved in sLe(X) and ESL synthesis, in ESL(+) MDA cells among other ESL(-) metastatic PCa cell lines. We also created and examined ESL(hi) and ESL(lo) variants of MDA cells to provide a direct comparison of the glycosyltransferase expression level. We found that normal prostate tissue and all metastatic PCa cell lines expressed glycosyltransferases required for sialo-lactosamine synthesis, including N-acetylglucosaminyl-, galactosyl-, and sialyltransferases. However, compared with expression in normal prostate tissue, ESL(+) MDA cells expressed a 31- and 10-fold higher level of alpha1,3 fucosyltransferases (FT) 3 and 6, respectively. Moreover, FT3 and FT6 were expressed at 2- to 354-fold lower levels in ESL(-) PCa cell lines. Consistent with these findings, ESL(hi) MDA cells expressed a 131- and 51-fold higher level of FT3 and FT6, respectively, compared with expression in ESL(lo) MDA cells. We also noted that alpha1,3 FT7 was expressed at a 5-fold greater level in ESL(hi) MDA cells. Furthermore, ESL(lo) MDA cells did not display sLe(X) on glycoproteins capable of bearing sLe(X), notably P-selectin glycoprotein ligand-1. These results implicate the importance of alpha1,3 FT3, FT6, and/or FT7 in sLe(X) and ESL synthesis on metastatic PCa cells.


Journal of Biological Chemistry | 2006

Differential Engagement of Modules 1 and 4 of Vascular Cell Adhesion Molecule-1 (CD106) by Integrins α4β1 (CD49d/29) and αMβ2 (CD11b/18) of Eosinophils

Steven R. Barthel; Douglas S. Annis; Deane F. Mosher; Mats W. Johansson

We have studied adhesion of eosinophils to various forms of vascular cell adhesion molecule 1 (VCAM-1, CD106), an integrin counter-receptor implicated in eosinophil recruitment to the airway in asthma. Full-length 7d-VCAM-1, with seven immunoglobulin-like modules, contains integrin-binding sites in modules 1 and 4. The alternatively spliced six-module protein, 6d-VCAM-1, lacks module 4. In static assays, unactivated purified human blood eosinophils adhered similarly to recombinant soluble human 6d-VCAM-1 and 7d-VCAM-1 coated onto polystyrene microtiter wells. Further experiments, however, revealed differences in recognition of modules 1 and 4. Antibody blocking indicated that eosinophil adhesion to 6d-VCAM-1 or a VCAM-1 construct containing only modules 1–3, 1–3VCAM-1, is mediated by α4β1 (CD49d/29), whereas adhesion to a construct containing modules 4–7, 4–7VCAM-1, is mediated by bothα4β1 andαMβ2 (CD11b/18). Inhibitors of phosphoinositide 3-kinase, which block adhesion of eosinophils mediated by αMβ2, blocked adhesion to 4–7VCAM-1 but had no effect on adhesion to 6d-VCAM-1. Consistent with the antibody and pharmacological blocking experiments, eosinophilic leukemic cell lines lacking αMβ2 did not adhere to 4–7VCAM-1 but did adhere to 6d-VCAM-1 or 1–3VCAM-1. Activation of eosinophils by interleukin (IL)-5 enhanced static adhesion to 6d-VCAM-1, 7d-VCAM-1, or 4–7VCAM-1; IL-5-enhanced adhesion to all 3 constructs was blocked by anti-αMβ2. Adhesion of unstimulated eosinophils to 7d-VCAM-1 under flow conditions was inhibited by anti-α4 or anti-αM. IL-5 treatment decreased eosinophil adhesion to 7d-VCAM-1 under flow, and anti-αM had the paradoxical effect of increasing adhesion. These results demonstrate that αMβ2 modulatesα4β1-mediated eosinophil adhesion to VCAM-1 under both static and flow conditions.


Journal of Investigative Dermatology | 2012

Metabolic Inhibition of Galectin-1-Binding Carbohydrates Accentuates Antitumor Immunity

Filiberto Cedeno-Laurent; Matthew J. Opperman; Steven R. Barthel; Danielle L. Hays; Tobias Schatton; Qian Zhan; Xiaoying He; Khushi L. Matta; Jeffrey G. Supko; Markus H. Frank; George F. Murphy; Charles J. Dimitroff

Galectin-1 (Gal-1) has been shown to play a major role in tumor immune escape by inducing apoptosis of effector leukocytes and correlating with tumor aggressiveness and disease progression. Thus, targeting the Gal-1/Gal-1 ligand axis represents a promising cancer therapeutic approach. Here, to test the Gal-1-mediated tumor immune evasion hypothesis and demonstrate the importance of Gal-1-binding N-acetyllactosamines in controlling the fate and function of antitumor immune cells, we treated melanoma- or lymphoma-bearing mice with peracetylated 4-fluoro-glucosamine (4-F-GlcNAc), a metabolic inhibitor of N-acetyllactosamine biosynthesis, and analyzed tumor growth and immune profiles. We found that 4-F-GlcNAc spared Gal-1-mediated apoptosis of T cells and natural killer (NK) cells by decreasing their expression of Gal-1-binding determinants. 4-F-GlcNAc enhanced tumor lymphocytic infiltration and promoted elevations in tumor-specific cytotoxic T cells and IFN-γ levels, while lowering IL-10 production. Collectively, our data suggest that metabolic lowering of Gal-1-binding N-acetyllactosamines may attenuate tumor growth by boosting antitumor immune cell levels, representing a promising approach for cancer immunotherapy.

Collaboration


Dive into the Steven R. Barthel's collaboration.

Top Co-Authors

Avatar

Charles J. Dimitroff

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Opperman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tobias Schatton

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle L. Hays

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George F. Murphy

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge