Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Charles J. Dimitroff is active.

Publication


Featured researches published by Charles J. Dimitroff.


Expert Opinion on Therapeutic Targets | 2007

Targeting selectins and selectin ligands in inflammation and cancer

Steven R. Barthel; Jacyln D Gavino; Leyla Descheny; Charles J. Dimitroff

Inflammation and cancer metastasis are associated with extravasation of leukocytes or tumor cells from blood into tissue. Such movement is believed to follow a coordinated and sequential molecular cascade initiated, in part, by the three members of the selectin family of carbohydrate-binding proteins: E-selectin (CD62E), L-selectin (CD62L) and P-selectin (CD62P). E-selectin is particularly noteworthy in disease by virtue of its expression on activated endothelium and on bone–skin microvascular linings and for its role in cell rolling, cell signaling and chemotaxis. E-selectin, along with L- or P-selectin, mediates cell tethering and rolling interactions through the recognition of sialo-fucosylated Lewis carbohydrates expressed on structurally diverse protein–lipid ligands on circulating leukocytes or tumor cells. Major advances in understanding the role of E-selectin in inflammation and cancer have been advanced by experiments assaying E-selectin-mediated rolling of leukocytes and tumor cells under hydrodynamic shear flow, by clinical models of E-selectin-dependent inflammation, by mice deficient in E-selectin and by mice deficient in glycosyltransferases that regulate the binding activity of E-selectin ligands. Here, the authors elaborate on how E-selectin and its ligands may facilitate leukocyte or tumor cell recruitment in inflammatory and metastatic settings. Antagonists that target cellular interactions with E-selectin and other members of the selectin family, including neutralizing monoclonal antibodies, competitive ligand inhibitors or metabolic carbohydrate mimetics, exemplify a growing arsenal of potentially effective therapeutics in controlling inflammation and the metastatic behavior of cancer.


Cancer Research | 2004

Rolling of Human Bone-Metastatic Prostate Tumor Cells on Human Bone Marrow Endothelium under Shear Flow Is Mediated by E-Selectin

Charles J. Dimitroff; Mirna Lechpammer; Denise Long-Woodward; Jeffery L. Kutok

Prostate tumor cells preferentially adhere to bone marrow endothelial cells (BMECs) compared with endothelial linings from other tissue microvessels, implicating the importance of BMEC adhesion in the predilection of prostate tumor metastasis to bone. E (endothelial)-selectin, which functions as an initiator of leukocyte adhesion to target tissue endothelium, is constitutively expressed on BMECs, suggesting that prostate tumor cells could use this adhesive mechanism to initiate their migration into bone. In this report, we demonstrate for the first time that human bone-metastatic prostate tumor cells roll on human BMECs under physiological flow conditions. We show that these dynamic adhesive interactions are dependent on the expression of BMEC E-selectin and sialylated glycoconjugates on bone-metastatic prostate tumor cells. We also establish the importance of both glycoprotein(s) and glycosphingolipid structures displaying sialyl Lewis X epitopes as potential E-selectin ligands on bone-metastatic prostate tumor cells. Coexpression of sialylated glycoproteins and glycolipids on bone-metastatic prostate tumor cells triggers robust E-selectin binding activity, which is identical to that observed on human hematopoietic progenitor cells. By Western blot analysis, we identify candidate E-selectin glycoprotein ligand(s); distinct sialyl Lewis X (or HECA-452 antigen)-bearing membrane proteins were resolved at Mr 130,000 and Mr 220,000 as well as others ranging from Mr 100,000 to Mr 220,000. Immunohistochemical analysis of HECA-452 antigen expression on normal prostate tissue and on low- and high-grade prostate adenocarcinoma shows that HECA-452 antigen expression is directly associated with prostate tumor progression and may indicate acquisition of E-selectin ligand expression. These findings provide novel insight into potential adhesive mechanisms promoting hematogenous dissemination of prostate tumor cells into bone.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking

Steven R. Barthel; Georg K. Wiese; Jaehyung Cho; Matthew J. Opperman; Danielle L. Hays; Javed Siddiqui; Kenneth J. Pienta; Bruce Furie; Charles J. Dimitroff

How cancer cells bind to vascular surfaces and extravasate into target organs is an underappreciated, yet essential step in metastasis. We postulate that the metastatic process involves discrete adhesive interactions between circulating cancer cells and microvascular endothelial cells. Sialyl Lewis X (sLeX) on prostate cancer (PCa) cells is thought to promote metastasis by mediating PCa cell binding to microvascular endothelial (E)-selectin. Yet, regulation of sLeX and related E-selectin ligand expression in PCa cells is a poorly understood factor in PCa metastasis. Here, we describe a glycobiological mechanism regulating E-selectin-mediated adhesion and metastatic potential of PCa cells. We demonstrate that α1,3 fucosyltransferases (FT) 3, 6, and 7 are markedly elevated in bone- and liver-metastatic PCa and dictate synthesis of sLeX and E-selectin ligands on metastatic PCa cells. Upregulated FT3, FT6, or FT7 expression induced robust PCa PC-3 cell adhesion to bone marrow (BM) endothelium and to inflamed postcapillary venules in an E-selectin-dependent manner. Membrane proteins, CD44, carcinoembryonic antigen (CEA), podocalyxin-like protein (PCLP), and melanoma cell adhesion molecule (MCAM) were major scaffolds presenting E-selectin-binding determinants on FT-upregulated PC-3 cells. Furthermore, elevated FT7 expression promoted PC-3 cell trafficking to and retention in BM through an E-selectin dependent event. These results indicate that α1,3 FTs could enhance metastatic efficiency of PCa by triggering an E-selectin-dependent trafficking mechanism.


Investigational New Drugs | 1999

Anti-Angiogenic Activity of Selected Receptor Tyrosine Kinase Inhibitors, PD166285 and PD173074: Implications for Combination Treatment with Photodynamic Therapy

Charles J. Dimitroff; Wayne D. Klohs; Amarnath Sharma; Paula Pera; Denise L. Driscoll; Jean Veith; Randall W. Steinkampf; Mel Conrad Schroeder; Sylvester Klutchko; Adam B. Sumlin; Barbara W. Henderson; Thomas J. Dougherty; Ralph J. Bernacki

Angiogenesis, the formation of new blood vessels from an existing vasculature, is requisite for tumor growth. It entails intercellular coordination of endothelial and tumor cells through angiogenic growth factor signaling. Interruption of these events has implications in the suppression of tumor growth. PD166285, a broad-spectrum receptor tyrosine kinase (RTK) inhibitor, and PD173074, a selective FGFR1TK inhibitor, were evaluated for their anti-angiogenic activity and anti-tumor efficacy in combination with photodynamic therapy (PDT). To evaluate the anti-angiogenic and anti-tumor activities of these compounds, RTK assays, in vitro tumor cell growth and microcapillary formation assays, in vivo murine angiogenesis and anti-tumor efficacy studies utilizing RTK inhibitors in combination with photodynamic therapy were performed. PD166285 inhibited PDGFR-β-, EGFR-, and FGFR1TKs and c-src TK by 50% (IC50) at concentrations between 7−85nM. PD173074 displayed selective inhibitory activity towards FGFR1TK at 26nM. PD173074 demonstrated (>100 fold) selective growth inhibitory action towards human umbilical vein endothelial cells compared with a panel of tumor cell lines. Both PD166285 and PD173074 (at 10nM) inhibited the formation of microcapillaries on Matrigel-coated plastic. In vivo anti-angiogenesis studies in mice revealed that oral administration (p.o.) of either PD166285 (1−25 mg/kg) or PD173074 (25−100 mg/kg) generated dose dependent inhibition of angiogenesis. Against a murine mammary 16c tumor, significantly prolonged tumor regressions were achieved with daily p.o. doses of PD166285 (5−10 mg/kg) or PD173074 (30−60 mg/kg) following PDT compared with PDT alone (p<0.001). Many long-term survivors were also noted in combination treatment groups. PD166285 and PD173074 displayed potent anti-angiogenic and anti-tumor activity and prolonged the duration of anti-tumor response to PDT. Interference in membrane signal transduction by inhibitors of specific RTKs (e.g. FGFR1TK) should result in new chemotherapeutic agents having the ability to limit tumor angiogenesis and regrowth following cytoreductive treatments such as PDT.


Cancer Research | 2005

Identification of Leukocyte E-Selectin Ligands, P-Selectin Glycoprotein Ligand-1 and E-Selectin Ligand-1, on Human Metastatic Prostate Tumor Cells

Charles J. Dimitroff; Leyla Descheny; Natalia Trujillo; Robert Kim; Vuong Nguyen; Wei Huang; Kenneth J. Pienta; Jeffery L. Kutok; Mark A. Rubin

Prostate tumor cells, which characteristically metastasize to bone, initiate binding interactions with bone marrow endothelium under blood flow conditions through binding interactions with E-selectin. We hypothesized that E-selectin ligands on prostate tumor cells are directly associated with bone-metastatic potential. In this report, we elucidate the identity of E-selectin ligands on human metastatic prostate tumor cells and examine their association with prostate tumor progression and metastasis in vivo. To our surprise, we found that the E-selectin-binding form of P-selectin glycoprotein ligand-1 (PSGL-1) is expressed on the human bone-metastatic prostate tumor MDA PCa 2b cell line. Interestingly, we also found that human prostate tumor cells derived from bone, lymph node, and brain metastases expressed another leukocyte E-selectin ligand, E-selectin ligand-1 (ESL-1). Immunohistochemical analysis of PSGL-1 and ESL-1 in normal prostate tissue and in localized and metastatic prostate tumors revealed that ESL-1 was principally localized to intracellular cell membrane and expressed on all normal and malignant prostate tissue, whereas PSGL-1 was notably detected on the surfaces of bone-metastatic prostate tumor cells. These findings implicate a functional role of PSGL-1 in the bone tropism of prostate tumor cells and establish a new perspective into the molecular mechanism of human prostate tumor metastasis.


Journal of Immunology | 2012

Galectin-1 Triggers an Immunoregulatory Signature in Th Cells Functionally Defined by IL-10 Expression

Filiberto Cedeno-Laurent; Matthew J. Opperman; Steven R. Barthel; Vijay K. Kuchroo; Charles J. Dimitroff

Galectin-1 (Gal-1), a β-galactoside–binding protein, can alter fate and effector function of Th cells; however, little is known about how Gal-1 induces Th cell differentiation. In this article, we show that both uncommitted and polarized Th cells bound by Gal-1 expressed an immunoregulatory signature defined by IL-10. IL-10 synthesis was stimulated by direct Gal-1 engagement to cell surface glycoproteins, principally CD45, on activated Th cells and enhanced by IL-21 expression through the c-Maf/aryl hydrocarbon receptor pathway, independent of APCs. Gal-1–induced IL-10+ T cells efficiently suppressed T cell proliferation and T cell-mediated inflammation and promoted the establishment of cancer immune-privileged sites. Collectively, these findings show how Gal-1 functions as a major glycome determinant regulating Th cell development, inflammation, and tumor immunity.


Journal of Immunology | 2002

Direct real-time observation of E- and P-selectin-mediated rolling on cutaneous lymphocyte-associated antigen immobilized on Western blots.

Robert C. Fuhlbrigge; Sandra L. King; Charles J. Dimitroff; Thomas S. Kupper; Robert Sackstein

Human memory T cells associated with cutaneous inflammatory responses are characterized by their expression of cutaneous lymphocyte-associated Ag (CLA), a carbohydrate determinant differentially expressed on P-selectin glycoprotein ligand-1 (PSGL-1). Although expression of the CLA epitope on PSGL-1 (CLA+ PSGL-1) by memory T cells is associated with acquisition of E-selectin ligand activity, it is not known whether CLA+ PSGL-1, itself, is a ligand for E-selectin on human T cells or whether other glycoproteins, with or without CLA modification, support E-selectin-dependent rolling in shear flow. To address this issue, we developed a method for real-time analysis of functional adhesive interactions between selectin-bearing cells in shear flow with leukocyte ligands resolved by SDS-PAGE and immobilized on standard Western blots. The results of these studies provide direct evidence that CLA+ PSGL-1 is a functional ligand for both E- and P-selectin, confirm that the P-selectin ligand activity of PSGL-1 is independent of CLA modification, and identify a distinct, non-PSGL-1 E-selectin ligand on CLA-positive human memory T cells.


Clinical Immunology | 2012

Galectin-1 research in T cell immunity: Past, present and future

Filiberto Cedeno-Laurent; Charles J. Dimitroff

Galectin-1 (Gal-1) is one of 15 evolutionarily conserved ß-galactoside-binding proteins that display biologically-diverse activities in pathogenesis of inflammation and cancer. Gal-1 is variably expressed on immune cells and endothelial cells, though is commonly found and secreted at high levels in cancer cells. It induces apoptosis in effector T cells through homodimeric binding of N-acetyllactosamines on membrane glycoproteins (Gal-1 ligands). There is also compelling evidence in models of cancer and autoimmunity that recombinant Gal-1 (rGal-1) can potentiate immunoregulatory function of T cells. Here, we review Gal-1s structural and functional features, while analyzing potential drawbacks and technical difficulties inherent to rGal-1s nature. We also describe new Gal-1 preparations that exhibit dimeric stability and functional activity on T cells, providing renewed excitement for studying Gal-1 efficacy and/or use as anti-inflammatory therapeutics. We lastly summarize strategies targeting the Gal-1-Gal-1 ligand axis to circumvent Gal-1-driven immune escape in cancer and boost anti-tumor immunity.


Journal of Clinical Investigation | 2003

Prevention of leukocyte migration to inflamed skin with a novel fluorosugar modifier of cutaneous lymphocyte-associated antigen

Charles J. Dimitroff; Thomas S. Kupper; Robert Sackstein

E-selectin and P-selectin on dermal postcapillary venules play critical roles in the migration of effector T cells into inflamed skin. P-selectin glycoprotein ligand-1 (PSGL-1) modified by alpha1,3-fucosyltransferase is the principal selectin ligand on skin-homing T cells and is required for effector T cell entry into inflamed skin. We have previously shown that a fluorinated analog of N-acetylglucosamine peracetylated-4-fluorinated-d-glucosamine (4-F-GlcNAc), inhibits selectin ligand expression on human T cell PSGL-1. To analyze 4-F-GlcNAc efficacy in dampening effector T cell migration to inflamed skin, we elicited allergic contact hypersensitivity (CHS) reactions in mice treated with 4-F-GlcNAc. We also investigated 4-F-GlcNAc efficacy on lymphocyte E-selectin ligand expression in LNs draining antigen-sensitized skin and on other immunological processes requisite for CHS responses. Our results showed that 4-F-GlcNAc treatment attenuated lymphocyte E-selectin ligand expression in skin-draining LNs and prevented CHS reactions. Significant reductions in inflammatory lymphocytic infiltrate were observed, while pathways related to antigenic processing and presentation and naive T cell recognition within skin-draining LNs were unaffected. These data indicate that 4-F-GlcNAc prevents CHS by inhibiting selectin ligand activity and the capacity of effector T cells to enter antigen-challenged skin without affecting the afferent phase of CHS.


Journal of Biological Chemistry | 2011

Peracetylated 4-fluoro-glucosamine reduces the content and repertoire of N- and O-glycans without direct incorporation.

Steven R. Barthel; Aristotelis Antonopoulos; Filiberto Cedeno-Laurent; Lana Schaffer; Gilberto Hernandez; Shilpa A. Patil; Simon J. North; Anne Dell; Khushi L. Matta; Sriram Neelamegham; Stuart M. Haslam; Charles J. Dimitroff

Prior studies have shown that treatment with the peracetylated 4-fluorinated analog of glucosamine (4-F-GlcNAc) elicits anti-skin inflammatory activity by ablating N-acetyllactosamine (LacNAc), sialyl Lewis X (sLeX), and related lectin ligands on effector leukocytes. Based on anti-sLeX antibody and lectin probing experiments on 4-F-GlcNAc-treated leukocytes, it was hypothesized that 4-F-GlcNAc inhibited sLeX formation by incorporating into LacNAc and blocking the addition of galactose or fucose at the carbon 4-position of 4-F-GlcNAc. To test this hypothesis, we determined whether 4-F-GlcNAc is directly incorporated into N- and O-glycans released from 4-F-GlcNAc-treated human sLeX (+) T cells and leukemic KG1a cells. At concentrations that abrogated galectin-1 (Gal-1) ligand and E-selectin ligand expression and related LacNAc and sLeX structures, MALDI-TOF and MALDI-TOF/TOF mass spectrometry analyses showed that 4-F-GlcNAc 1) reduced content and structural diversity of tri- and tetra-antennary N-glycans and of O-glycans, 2) increased biantennary N-glycans, and 3) reduced LacNAc and sLeX on N-glycans and on core 2 O-glycans. Moreover, MALDI-TOF MS did not reveal any m/z ratios relating to the presence of fluorine atoms, indicating that 4-F-GlcNAc did not incorporate into glycans. Further analysis showed that 4-F-GlcNAc treatment had minimal effect on expression of 1200 glycome-related genes and did not alter the activity of LacNAc-synthesizing enzymes. However, 4-F-GlcNAc dramatically reduced intracellular levels of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a key precursor of LacNAc synthesis. These data show that Gal-1 and E-selectin ligand reduction by 4-F-GlcNAc is not caused by direct 4-F-GlcNAc glycan incorporation and consequent chain termination but rather by interference with UDP-GlcNAc synthesis.

Collaboration


Dive into the Charles J. Dimitroff's collaboration.

Top Co-Authors

Avatar

Steven R. Barthel

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Sackstein

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Opperman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ralph J. Bernacki

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Robert C. Fuhlbrigge

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Jennifer Liang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Khushi L. Matta

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Leyla Descheny

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge