Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Bartz is active.

Publication


Featured researches published by Steven R. Bartz.


Nature Biotechnology | 2003

Expression profiling reveals off-target gene regulation by RNAi.

Aimee L. Jackson; Steven R. Bartz; Janell M. Schelter; Sumire V. Kobayashi; Julja Burchard; Mao Mao; Bin Li; Guy Cavet; Peter S. Linsley

RNA interference is thought to require near-identity between the small interfering RNA (siRNA) and its cognate mRNA. Here, we used gene expression profiling to characterize the specificity of gene silencing by siRNAs in cultured human cells. Transcript profiles revealed siRNA-specific rather than target-specific signatures, including direct silencing of nontargeted genes containing as few as eleven contiguous nucleotides of identity to the siRNA. These results demonstrate that siRNAs may cross-react with targets of limited sequence similarity.


Molecular and Cellular Biology | 2006

Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions.

Steven R. Bartz; Zhan Zhang; Julja Burchard; Maki Imakura; Melissa Martin; Anthony Palmieri; Rachel Needham; Jie Guo; Marcia Gordon; Namjin Chung; Paul Warrener; Aimee L. Jackson; Michael Carleton; Melissa Oatley; Louis Locco; Francesca Santini; Todd Smith; Priya Kunapuli; Marc Ferrer; Berta Strulovici; Stephen H. Friend; Peter S. Linsley

ABSTRACT RNA interference technology allows the systematic genetic analysis of the molecular alterations in cancer cells and how these alterations affect response to therapies. Here we used small interfering RNA (siRNA) screens to identify genes that enhance the cytotoxicity (enhancers) of established anticancer chemotherapeutics. Hits identified in drug enhancer screens of cisplatin, gemcitabine, and paclitaxel were largely unique to the drug being tested and could be linked to the drugs mechanism of action. Hits identified by screening of a genome-scale siRNA library for cisplatin enhancers in TP53-deficient HeLa cells were significantly enriched for genes with annotated functions in DNA damage repair as well as poorly characterized genes likely having novel functions in this process. We followed up on a subset of the hits from the cisplatin enhancer screen and validated a number of enhancers whose products interact with BRCA1 and/or BRCA2. TP53+/− matched-pair cell lines were used to determine if knockdown of BRCA1, BRCA2, or validated hits that associate with BRCA1 and BRCA2 selectively enhances cisplatin cytotoxicity in TP53-deficient cells. Silencing of BRCA1, BRCA2, or BRCA1/2-associated genes enhanced cisplatin cytotoxicity ∼4- to 7-fold more in TP53-deficient cells than in matched TP53 wild-type cells. Thus, tumor cells having disruptions in BRCA1/2 network genes and TP53 together are more sensitive to cisplatin than cells with either disruption alone.


Molecular and Cellular Biology | 2007

The Hypoxia-Inducible Factor 2α N-Terminal and C-Terminal Transactivation Domains Cooperate To Promote Renal Tumorigenesis In Vivo

Qin Yan; Steven R. Bartz; Mao Mao; Lianjie Li; William G. Kaelin

ABSTRACT Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor, consisting of an alpha subunit and a beta subunit, that controls cellular responses to hypoxia. HIFα contains two transcriptional activation domains called the N-terminal transactivation domain (NTAD) and the C-terminal transactivation domain (CTAD). HIFα is destabilized by prolyl hydroxylation catalyzed by EglN family members. In addition, CTAD function is inhibited by asparagine hydroxylation catalyzed by FIH1. Both hydroxylation reactions are linked to oxygen availability. The von Hippel-Lindau tumor suppressor protein (pVHL) is frequently mutated in kidney cancer and is part of the ubiquitin ligase complex that targets prolyl hydroxylated HIFα for destruction. Recent studies suggest that HIF2α plays an especially important role in promoting tumor formation by pVHL-defective renal carcinoma cells among the three HIFα paralogs. Here we dissected the relative contribution of the two HIF2α transactivation domains to hypoxic gene activation and renal carcinogenesis and investigated the regulation of the HIF2α CTAD by FIH1. We found that the HIF2α NTAD is capable of activating both artificial and naturally occurring HIF-responsive promoters in the absence of the CTAD. Moreover, we found that the HIF2α CTAD, in contrast to the HIF1α CTAD, is relatively resistant to the inhibitory effects of FIH1 under normoxic conditions and that, perhaps as a result, both the NTAD and CTAD cooperate to promote renal carcinogenesis in vivo.


Journal of Biomolecular Screening | 2008

Median Absolute Deviation to Improve Hit Selection for Genome-Scale RNAi Screens

Namjin Chung; Xiaohua Douglas Zhang; Anthony Kreamer; Louis Locco; Pei Fen Kuan; Steven R. Bartz; Peter S. Linsley; Marc Ferrer; Berta Strulovici

High-throughput screening (HTS) of large-scale RNA interference (RNAi) libraries has become an increasingly popular method of functional genomics in recent years. Cell-based assays used for RNAi screening often produce small dynamic ranges and significant variability because of the combination of cellular heterogeneity, transfection efficiency, and the intrinsic nature of the genes being targeted. These properties make reliable hit selection in the RNAi screen a difficult task. The use of robust methods based on median and median absolute deviation (MAD) has been suggested to improve hit selection in such cases, but mean and standard deviation (SD)—based methods are still predominantly used in many RNAi HTS. In an experimental approach to compare these 2 methods, a genome-scale small interfering RNA (siRNA) screen was performed, in which the identification of novel targets increasing the therapeutic index of the chemotherapeutic agent mitomycin C (MMC) was sought. MAD values were resistant to the presence of outliers, and the hits selected by the MAD-based method included all the hits that would be selected by SD-based method as well as a significant number of additional hits. When retested in triplicate, a similar percentage of these siRNAs were shown to genuinely sensitize cells to MMC compared with the hits shared between SD- and MAD-based methods. Confirmed hits were enriched with the genes involved in the DNA damage response and cell cycle regulation, validating the overall hit selection strategy. Finally, computer simulations showed the superiority and generality of the MAD-based method in various RNAi HTS data models. In conclusion, the authors demonstrate that the MAD-based hit selection method rescued physiologically relevant false negatives that would have been missed in the SD-based method, and they believe it to be the desirable 1st-choice hit selection method for RNAi screen results. ( Journal of Biomolecular Screening 2008:149-158)


Proceedings of the National Academy of Sciences of the United States of America | 2006

LRRTM3 promotes processing of amyloid-precursor protein by BACE1 and is a positional candidate gene for late-onset Alzheimer's disease

John Majercak; William J. Ray; Amy S. Espeseth; Adam J. Simon; Xiao-Ping Shi; Carrie Wolffe; Krista Getty; Shane Marine; Erica Stec; Marc Ferrer; Berta Strulovici; Steven R. Bartz; Adam T. Gates; Min Xu; Qian Huang; Lei Ma; Paul J. Shughrue; Julja Burchard; Dennis Colussi; Beth Pietrak; Jason A. Kahana; Dirk Beher; Thomas W. Rosahl; Mark S. Shearman; Daria J. Hazuda; Alan B. Sachs; Kenneth S. Koblan; Guy R. Seabrook; David J. Stone

Rare familial forms of Alzheimers disease (AD) are thought to be caused by elevated proteolytic production of the Aβ42 peptide from the β-amyloid-precursor protein (APP). Although the pathogenesis of the more common late-onset AD (LOAD) is not understood, BACE1, the protease that cleaves APP to generate the N terminus of Aβ42, is more active in patients with LOAD, suggesting that increased amyloid production processing might also contribute to the sporadic disease. Using high-throughput siRNA screening technology, we assessed 15,200 genes for their role in Aβ42 secretion and identified leucine-rich repeat transmembrane 3 (LRRTM3) as a neuronal gene that promotes APP processing by BACE1. siRNAs targeting LRRTM3 inhibit the secretion of Aβ40, Aβ42, and sAPPβ, the N-terminal APP fragment produced by BACE1 cleavage, from cultured cells and primary neurons by up to 60%, whereas overexpression increases Aβ secretion. LRRTM3 is expressed nearly exclusively in the nervous system, including regions affected during AD, such as the dentate gyrus. Furthermore, LRRTM3 maps to a region of chromosome 10 linked to both LOAD and elevated plasma Aβ42, and is structurally similar to a family of neuronal receptors that includes the NOGO receptor, an inhibitor of neuronal regeneration and APP processing. Thus, LRRTM3 is a functional and positional candidate gene for AD, and, given its receptor-like structure and restricted expression, a potential therapeutic target.


Molecular and Cellular Neuroscience | 2006

A genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels

Amy S. Espeseth; Qian Huang; Adam T. Gates; Min Xu; Yuanjiang Yu; Adam J. Simon; Xiao-Ping Shi; Xiaohua Zhang; Paul Hodor; David J. Stone; Julja Burchard; Guy Cavet; Steven R. Bartz; Peter S. Linsley; William J. Ray; Daria J. Hazuda

Proteolysis of beta-amyloid precursor protein (APP) into amyloid beta peptide (Abeta) by beta- and gamma-secretases is a critical step in the pathogenesis of Alzheimers Disease (AD), but the pathways regulating secretases are not fully characterized. Ubiquitinylation, which is dysregulated in AD, may affect APP processing. Here, we describe a screen for APP processing modulators using an siRNA library targeting 532 predicted ubiquitin ligases. Seven siRNA pools diminished Abeta production. Of these, siRNAs targeting PPIL2 (hCyp-60) suppressed beta-site cleavage. Knockdown of PPIL2 mRNA decreased BACE1 mRNA, while overexpression of PPIL2 cDNA enhanced BACE1 mRNA levels. Microarray analysis of PPIL2 or BACE1 knockdown indicated that genes affected by BACE1 knockdown are a subset of those dependent upon PPIL2; suggesting that BACE1 expression is downstream of PPIL2. The association of PPIL2 with BACE expression and its requirement for Abeta production suggests new approaches to discover disease modifying agents for AD.


Journal of Lipid Research | 2011

Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9

Brandon Ason; Samnang Tep; Harry R. Davis; Yiming Xu; Glen Tetzloff; Beverly Galinski; Ferdie Soriano; Natalya Dubinina; Lei Zhu; Alice Stefanni; Kenny K. Wong; Marija Tadin-Strapps; Steven R. Bartz; Brian K. Hubbard; Mollie Ranalletta; Alan B. Sachs; Alison M. Strack; Nelly A. Kuklin

Reducing circulating LDL-cholesterol (LDL-c) reduces the risk of cardiovascular disease in people with hypercholesterolemia. Current approaches to reduce circulating LDL-c include statins, which inhibit cholesterol synthesis, and ezetimibe, which blocks cholesterol absorption. Both elevate serum PCSK9 protein levels in patients, which could attenuate their efficacy by reducing the amount of cholesterol cleared from circulation. To determine whether PCSK9 inhibition could enhance LDL-c lowering of both statins and ezetimibe, we utilized small interfering RNAs (siRNAs) to knock down Pcsk9, together with ezetimibe, rosuvastatin, and an ezetimibe/rosuvastatin combination in a mouse model with a human-like lipid profile. We found that ezetimibe, rosuvastatin, and ezetimibe/rosuvastatin combined lower serum cholesterol but induce the expression of Pcsk9 as well as the Srebp-2 hepatic cholesterol biosynthesis pathway. Pcsk9 knockdown in combination with either treatment led to greater reductions in serum non-HDL with a near-uniform reduction of all LDL-c subfractions. In addition to reducing serum cholesterol, the combined rosuvastatin/ezetimibe/Pcsk9 siRNA treatment exhibited a significant reduction in serum APOB protein and triglyceride levels. Taken together, these data provide evidence that PCSK9 inhibitors, in combination with current therapies, have the potential to achieve greater reductions in both serum cholesterol and triglycerides.


Nucleic Acids Research | 2010

The siRNA sequence and guide strand overhangs are determinants of in vivo duration of silencing

Walter Strapps; Victoria Pickering; Gladys T. Muiru; Julie Rice; Stacey Orsborn; Barry Polisky; Alan B. Sachs; Steven R. Bartz

The use of short interfering RNAs (siRNA) in animals for target validation or as potential therapeutics is hindered by the short physical half-life when delivered as unencapsulated material and in turn the short active half-life of siRNAs in vivo. Here we demonstrate that the character of the two 3′-overhang nucleotides of the guide strand of siRNAs is a determinant of the duration of silencing by siRNAs both in vivo and in tissue culture cells. We demonstrate that deoxyribonucleotides in the guide strand overhang of siRNAs have a negative impact on maintenance of both the in vitro and in vivo activity of siRNAs over time. Overhangs that contain ribonucleotides or 2′-O-methyl modified nucleotides do not demonstrate this same impairment. We also demonstrate that the sequence of an siRNA is a determinant of the duration of silencing of siRNAs directed against the same target even when those siRNAs have equivalent activities in vitro. Our experiments have determined that a measurable duration parameter exists, distinct from both maximum silencing ability and the potency of siRNAs. Our findings provide information on incorporating chemically modified nucleotides into siRNAs for potent, durable therapeutics and also inform on methods used to select siRNAs for therapeutic and research purposes.


Nature Biotechnology | 2012

Assessing unintended hybridization-induced biological effects of oligonucleotides

Morten Lindow; Hans-Peter Vornlocher; Donald Riley; Douglas J. Kornbrust; Julja Burchard; Laurence O Whiteley; Joanne Kamens; James D. Thompson; Saraswathy Nochur; Husam Younis; Steven R. Bartz; Joel D. Parry; Nicolay Ferrari; Scott P. Henry; Arthur A. Levin

volume 30 number 10 oCTober 2012 nature biotechnology 1Department of Biomedical Informatics, Vanderbilt University, Nashville, Tennessee, USA. 2Department of Genome Sciences, University of Washington, Seattle, Washington, USA. 3Center for Applied Molecular Medicine, University of Southern California, Los Angeles, California, USA. 4Canary Center for Cancer Early Detection, Stanford University, Stanford, California, USA. 5Department of Stress & Developmental Biology, Leibniz Institute for Plant Biochemistry, Halle (Saale), Germany. 6Proteomics Services, Cambridge Centre for Proteomics, Cambridge, England. 7Genome Biology, EMBL Heidelberg, Germany. 8Insilicos, Seattle, Washington, USA. 9Institute for Systems Biology, Seattle, Washington, USA. 10Matrix Science, Boston, Massachusetts, USA. 11USC Stevens Institute for Innovation, University of Southern California, Los Angeles, California, USA. 12AB SCIEX, Foster City, California, USA. 13Agilent Technologies, Santa Clara, California, USA. 14Bruker Daltonik GmbH, Bremen, Germany. 15Thermo Fisher Scientific, San Jose, California, USA. 16Waters Corporation, Manchester, UK. 17LabKey Software, Seattle, Washington, USA. 18These authors contributed equally to this work. email: [email protected]


Journal of Lipid Research | 2011

siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids

Marija Tadin-Strapps; Laurence B. Peterson; Anne-Marie Cumiskey; Ray Rosa; Vivienne Mendoza; Jose Castro-Perez; Oscar Puig; Liwen Zhang; Walter Strapps; Satyasri Yendluri; Lori Andrews; Victoria Pickering; Julie Rice; Lily Luo; Zhu Chen; Samnang Tep; Brandon Ason; Elizabeth Polizzi Somers; Alan B. Sachs; Steven R. Bartz; Jenny Tian; Jayne Chin; Brian K. Hubbard; Kenny K. Wong; Lyndon J. Mitnaul

Increased serum apolipoprotein (apo)B and associated LDL levels are well-correlated with an increased risk of coronary disease. ApoE–/– and low density lipoprotein receptor (LDLr)–/– mice have been extensively used for studies of coronary atherosclerosis. These animals show atherosclerotic lesions similar to those in humans, but their serum lipids are low in apoB-containing LDL particles. We describe the development of a new mouse model with a human-like lipid profile. Ldlr CETP+/– hemizygous mice carry a single copy of the human CETP transgene and a single copy of a LDL receptor mutation. To evaluate the apoB pathways in this mouse model, we used novel short-interfering RNAs (siRNA) formulated in lipid nanoparticles (LNP). ApoB siRNAs induced up to 95% reduction of liver ApoB mRNA and serum apoB protein, and a significant lowering of serum LDL in Ldlr CETP+/– mice. ApoB targeting is specific and dose-dependent, and it shows lipid-lowering effects for over three weeks. Although specific triglycerides (TG) were affected by ApoB mRNA knockdown (KD) and the total plasma lipid levels were decreased by 70%, the overall lipid distribution did not change. Results presented here demonstrate a new mouse model for investigating additional targets within the ApoB pathways using the siRNA modality.

Collaboration


Dive into the Steven R. Bartz's collaboration.

Top Co-Authors

Avatar

Peter S. Linsley

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marc Ferrer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michele A. Cleary

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge