Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Ellis is active.

Publication


Featured researches published by Steven R. Ellis.


Nature | 2008

Identification of RPS14 as a 5q- syndrome gene by RNA interference screen.

Benjamin L. Ebert; Jennifer L. Pretz; Jocelyn Bosco; Cindy Y. Chang; Pablo Tamayo; Naomi Galili; Azra Raza; David E. Root; Eyal C. Attar; Steven R. Ellis; Todd R. Golub

Somatic chromosomal deletions in cancer are thought to indicate the location of tumour suppressor genes, by which a complete loss of gene function occurs through biallelic deletion, point mutation or epigenetic silencing, thus fulfilling Knudson’s two-hit hypothesis. In many recurrent deletions, however, such biallelic inactivation has not been found. One prominent example is the 5q- syndrome, a subtype of myelodysplastic syndrome characterized by a defect in erythroid differentiation. Here we describe an RNA-mediated interference (RNAi)-based approach to discovery of the 5q- disease gene. We found that partial loss of function of the ribosomal subunit protein RPS14 phenocopies the disease in normal haematopoietic progenitor cells, and also that forced expression of RPS14 rescues the disease phenotype in patient-derived bone marrow cells. In addition, we identified a block in the processing of pre-ribosomal RNA in RPS14-deficient cells that is functionally equivalent to the defect in Diamond–Blackfan anaemia, linking the molecular pathophysiology of the 5q- syndrome to a congenital syndrome causing bone marrow failure. These results indicate that the 5q- syndrome is caused by a defect in ribosomal protein function and suggest that RNAi screening is an effective strategy for identifying causal haploinsufficiency disease genes.


Blood | 2008

Abnormalities of the large ribosomal subunit protein, Rpl35A, in diamond-blackfan anemia

Jason E. Farrar; Michelle Nater; Emi Caywood; Michael A. McDevitt; Jeanne Kowalski; Clifford M. Takemoto; C. Conover Talbot; Paul S. Meltzer; Diane Esposito; Alan H. Beggs; Hal E. Schneider; Agnieszka Grabowska; Sarah E. Ball; Edyta Niewiadomska; Colin A. Sieff; Adrianna Vlachos; Eva Atsidaftos; Steven R. Ellis; Jeffrey M. Lipton; Hanna T. Gazda; Robert J. Arceci

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression microarray in the analysis of 2 DBA patients with chromosome 3q deletions to identify RPL35A as a potential DBA gene. Sequence analysis of a cohort of DBA probands confirmed involvement RPL35A in DBA. shRNA inhibition shows that Rpl35a is essential for maturation of 28S and 5.8S rRNAs, 60S subunit biogenesis, normal proliferation, and cell survival. Analysis of pre-rRNA processing in primary DBA lymphoblastoid cell lines demonstrated similar alterations of large ribosomal subunit rRNA in both RPL35A-mutated and some RPL35A wild-type patients, suggesting additional large ribosomal subunit gene defects are likely present in some cases of DBA. These data demonstrate that alterations of large ribosomal subunit proteins cause DBA and support the hypothesis that DBA is primarily the result of altered ribosomal function. The results also establish that haploinsufficiency of large ribosomal subunit proteins contributes to bone marrow failure and potentially cancer predisposition.


Human Mutation | 2010

The ribosomal basis of diamond‐blackfan anemia: mutation and database update

Ilenia Boria; Emanuela Garelli; Hanna T. Gazda; Anna Aspesi; Paola Quarello; Elisa Pavesi; Daniela Ferrante; Joerg J. Meerpohl; Mutlu Kartal; Lydie Da Costa; Alexis Proust; Thierry Leblanc; Maud Simansour; Niklas Dahl; Anne-Sophie Fröjmark; Dagmar Pospisilova; Radek Cmejla; Alan H. Beggs; Mee Rie Sheen; Michael Landowski; Christopher Buros; Catherine Clinton; Lori J. Dobson; Adrianna Vlachos; Eva Atsidaftos; Jeffrey M. Lipton; Steven R. Ellis; Ugo Ramenghi; Irma Dianzani

Diamond‐Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype–phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database. Hum Mutat 31:1269–1279, 2010.


Molecular and Cellular Biology | 2001

Maf1p, a Negative Effector of RNA Polymerase III in Saccharomyces cerevisiae

Krzysztof Pluta; Olivier Lefebvre; Nancy C. Martin; Wiesław J. Smagowicz; David R. Stanford; Steven R. Ellis; Anita K. Hopper; Andre Sentenac; Magdalena Boguta

ABSTRACT Although yeast RNA polymerase III (Pol III) and the auxiliary factors TFIIIC and TFIIIB are well characterized, the mechanisms of class III gene regulation are poorly understood. Previous studies identified MAF1, a gene that affects tRNA suppressor efficiency and interacts genetically with Pol III. We show here that tRNA levels are elevated in maf1 mutant cells. In keeping with the higher levels of tRNA observed in vivo, the in vitro rate of Pol III RNA synthesis is significantly increased in maf1cell extracts. Mutations in the RPC160 gene encoding the largest subunit of Pol III which reduce tRNA levels were identified as suppressors of the maf1 growth defect. Interestingly, Maf1p is located in the nucleus and coimmunopurifies with epitope-tagged RNA Pol III. These results indicate that Maf1p acts as a negative effector of Pol III synthesis. This potential regulator of Pol III transcription is likely conserved since orthologs of Maf1p are present in other eukaryotes, including humans.


Journal of Biological Chemistry | 2005

Specific role for yeast homologs of the diamond blackfan anemia-associated Rps19 protein in ribosome synthesis

Isabelle Léger-Silvestre; Jacqueline Marie Caffrey; Rosy Dawaliby; Diana Alehandrovna Alvarez-Arias; Nicole Gas; Salvatore J. Bertolone; Pierre-Emmanuel Gleizes; Steven R. Ellis

Approximately 25% of cases of Diamond Blackfan anemia, a severe hypoplastic anemia, are linked to heterozygous mutations in the gene encoding ribosomal protein S19 that result in haploinsufficiency for this protein. Here we show that deletion of either of the two genes encoding Rps19 in yeast severely affects the production of 40 S ribosomal subunits. Rps19 is an essential protein that is strictly required for maturation of the 3′-end of 18 S rRNA. Depletion of Rps19 results in the accumulation of aberrant pre-40 S particles retained in the nucleus that fail to associate with pre-ribosomal factors involved in late maturation steps, including Enp1, Tsr1, and Rio2. When introduced in yeast Rps19, amino acid substitutions found in Diamond Blackfan anemia patients induce defects in the processing of the pre-rRNA similar to those observed in cells under-expressing Rps19. These results uncover a pivotal role of Rps19 in the assembly and maturation of the pre-40 S particles and demonstrate for the first time the effect of Diamond Blackfan anemia-associated mutations on the function of Rps19, strongly connecting the pathology to ribosome biogenesis.


Hematology-oncology Clinics of North America | 2009

Diamond Blackfan Anemia: Diagnosis, Treatment and Molecular Pathogenesis

Jeffrey M. Lipton; Steven R. Ellis

Diamond-Blackfan anemia (DBA) is a genetically and clinically heterogeneous disorder characterized by erythroid failure, congenital anomalies, and a predisposition to cancer. Faulty ribosome biogenesis, resulting in proapoptotic erythropoiesis leading to erythroid failure, is hypothesized to be the underlying defect. The genes identified to date that are mutated in DBA all encode ribosomal proteins associated with either the small or large subunit and in these cases haploinsufficiency gives rise to the disease. Extraordinarily robust laboratory and clinical investigations have recently led to demonstrable improvements in clinical care for patients with DBA.


Science | 2013

Ribosomal Protein SA Haploinsufficiency in Humans with Isolated Congenital Asplenia

Alexandre Bolze; Nizar Mahlaoui; Minji Byun; Bridget Turner; Nikolaus S. Trede; Steven R. Ellis; Avinash Abhyankar; Yuval Itan; Etienne Patin; Samuel Brebner; Paul Sackstein; Anne Puel; Capucine Picard; Laurent Abel; Lluis Quintana-Murci; Saul N. Faust; Anthony P. Williams; Richard Baretto; Michael Duddridge; Usha Kini; Andrew J. Pollard; Catherine Gaud; Pierre Frange; Daniel Orbach; Jean-François Emile; Jean-Louis Stephan; Ricardo U. Sorensen; Alessandro Plebani; Lennart Hammarström; Mary Ellen Conley

Spleen Knockout Explained Isolated congenital asplenia (ICA) is a rare disorder where patients are born without a spleen and are at increased risk of bacterial infection but have no other developmental abnormalities. Through sequence analysis of familial and sporadic cases, Bolze et al. (p. 976, published online 11 April) found that ICA patients carry mutations in the gene encoding ribosomal protein SA and as a result express about half the normal amount of this protein. The mechanism by which reduced expression of a housekeeping protein causes an organ-specific defect remains unclear. A rare human disorder, characterized by the absence of a spleen at birth, is associated with mutations in a ribosomal protein. Isolated congenital asplenia (ICA) is characterized by the absence of a spleen at birth in individuals with no other developmental defects. The patients are prone to life-threatening bacterial infections. The unbiased analysis of exomes revealed heterozygous mutations in RPSA in 18 patients from eight kindreds, corresponding to more than half the patients and over one-third of the kindreds studied. The clinical penetrance in these kindreds is complete. Expression studies indicated that the mutations carried by the patients—a nonsense mutation, a frameshift duplication, and five different missense mutations—cause autosomal dominant ICA by haploinsufficiency. RPSA encodes ribosomal protein SA, a component of the small subunit of the ribosome. This discovery establishes an essential role for RPSA in human spleen development.


Blood | 2011

Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia

Pekka Jaako; Johan Flygare; Karin Olsson; Ronan Quere; Mats Ehinger; Adrianna Henson; Steven R. Ellis; Axel Schambach; Christopher Baum; Johan Richter; Jonas Larsson; David Bryder; Stefan Karlsson

Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Among these genes, ribosomal protein S19 (RPS19) is mutated most frequently. Generation of animal models for diseases like DBA is challenging because the phenotype is highly dependent on the level of RPS19 down-regulation. We report the generation of mouse models for RPS19-deficient DBA using transgenic RNA interference that allows an inducible and graded down-regulation of Rps19. Rps19-deficient mice develop a macrocytic anemia together with leukocytopenia and variable platelet count that with time leads to the exhaustion of hematopoietic stem cells and bone marrow failure. Both RPS19 gene transfer and the loss of p53 rescue the DBA phenotype implying the potential of the models for testing novel therapies. This study demonstrates the feasibility of transgenic RNA interference to generate mouse models for human diseases caused by haploinsufficient expression of a gene.


Blood | 2011

Ribosomal protein gene deletions in Diamond-Blackfan anemia

Jason E. Farrar; Adrianna Vlachos; Eva Atsidaftos; Hannah Carlson-Donohoe; Thomas C. Markello; Robert J. Arceci; Steven R. Ellis; Jeffrey M. Lipton; David M. Bodine

Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.


Current Topics in Developmental Biology | 2008

Chapter 8 Diamond Blackfan Anemia: A Disorder of Red Blood Cell Development

Steven R. Ellis; Jeffrey M. Lipton

Diamond Blackfan anemia (DBA) is an inherited hypoplastic anemia that typically presents in the first year of life. The genes identified to date that are mutated in DBA encode ribosomal proteins, and in these cases ribosomal protein haploinsufficiency gives rise to the disease. The developmental timing of DBA presentation suggests that the changes in red blood cell production that occur around the time of birth trigger a pathophysiological mechanism, likely linked to defective ribosome synthesis, which precipitates the hematopoietic phenotype. Variable presentation of other clinical phenotypes in DBA patients indicates that other developmental pathways may also be affected by ribosomal protein haploinsufficiency and that the involvement of these pathways is influenced by modifier genes. Understanding the molecular basis for the developmental timing of DBA presentation promises to shed light on a number of baffling features of this disease. This chapter also attempts to demonstrate how the marriage of laboratory and clinical science may enhance each and permit insights into human disease that neither alone can accomplish.

Collaboration


Dive into the Steven R. Ellis's collaboration.

Top Co-Authors

Avatar

Jeffrey M. Lipton

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Johnson M. Liu

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Adrianna Vlachos

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jason E. Farrar

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Eva Atsidaftos

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Bodine

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anna Aspesi

University of Louisville

View shared research outputs
Top Co-Authors

Avatar

Irma Dianzani

University of Eastern Piedmont

View shared research outputs
Researchain Logo
Decentralizing Knowledge