Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eva Atsidaftos is active.

Publication


Featured researches published by Eva Atsidaftos.


American Journal of Human Genetics | 2008

Ribosomal Protein L5 and L11 Mutations Are Associated with Cleft Palate and Abnormal Thumbs in Diamond-Blackfan Anemia Patients

Hanna T. Gazda; Mee Rie Sheen; Adrianna Vlachos; Valérie Choesmel; Marie-Françoise O'Donohue; Hal E. Schneider; Natasha Darras; Catherine Hasman; Colin A. Sieff; Peter E. Newburger; Sarah E. Ball; Edyta Niewiadomska; Michał Matysiak; Jan Maciej Zaucha; Bertil Glader; Charlotte M. Niemeyer; Joerg J. Meerpohl; Eva Atsidaftos; Jeffrrey M. Lipton; Pierre-Emmanuel Gleizes; Alan H. Beggs

Diamond-Blackfan anemia (DBA), a congenital bone-marrow-failure syndrome, is characterized by red blood cell aplasia, macrocytic anemia, clinical heterogeneity, and increased risk of malignancy. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital anomalies that are present in approximately 30%-50% of patients. The disease has been associated with mutations in four ribosomal protein (RP) genes, RPS19, RPS24, RPS17, and RPL35A, in about 30% of patients. However, the genetic basis of the remaining 70% of cases is still unknown. Here, we report the second known mutation in RPS17 and probable pathogenic mutations in three more RP genes, RPL5, RPL11, and RPS7. In addition, we identified rare variants of unknown significance in three other genes, RPL36, RPS15, and RPS27A. Remarkably, careful review of the clinical data showed that mutations in RPL5 are associated with multiple physical abnormalities, including craniofacial, thumb, and heart anomalies, whereas isolated thumb malformations are predominantly present in patients carrying mutations in RPL11. We also demonstrate that mutations of RPL5, RPL11, or RPS7 in DBA cells is associated with diverse defects in the maturation of ribosomal RNAs in the large or the small ribosomal subunit production pathway, expanding the repertoire of ribosomal RNA processing defects associated with DBA.


British Journal of Haematology | 2008

Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference

Adrianna Vlachos; Sarah E. Ball; Niklas Dahl; Blanche P. Alter; Sujit Sheth; Ugo Ramenghi; Joerg J. Meerpohl; Stefan Karlsson; Johnson M. Liu; Thierry Leblanc; Carole Paley; Elizabeth M. Kang; Eva Judmann Leder; Eva Atsidaftos; Akiko Shimamura; Monica Bessler; Bertil Glader; Jeffrey M. Lipton

Diamond Blackfan anaemia (DBA) is a rare, genetically and clinically heterogeneous, inherited red cell aplasia. Classical DBA affects about seven per million live births and presents during the first year of life. However, as mutated genes have been discovered in DBA, non‐classical cases with less distinct phenotypes are being described in adults as well as children. In caring for these patients it is often difficult to have a clear understanding of the treatment options and their outcomes because of the lack of complete information on the natural history of the disease. The purpose of this document is to review the criteria for diagnosis, evaluate the available treatment options, including corticosteroid and transfusion therapies and stem cell transplantation, and propose a plan for optimizing patient care. Congenital anomalies, mode of inheritance, cancer predisposition, and pregnancy in DBA are also reviewed. Evidence‐based conclusions will be made when possible; however, as in many rare diseases, the data are often anecdotal and the recommendations are based upon the best judgment of experienced clinicians. The recommendations regarding the diagnosis and management described in this report are the result of deliberations and discussions at an international consensus conference.


American Journal of Human Genetics | 2006

Ribosomal Protein S24 Gene Is Mutated in Diamond-Blackfan Anemia

Hanna T. Gazda; Agnieszka Grabowska; Lilia B. Merida-Long; Elzbieta Latawiec; Hal E. Schneider; Jeffrey M. Lipton; Adrianna Vlachos; Eva Atsidaftos; Sarah E. Ball; Karen A. Orfali; Edyta Niewiadomska; Lydie Da Costa; Gil Tchernia; Charlotte M. Niemeyer; Joerg J. Meerpohl; Joachim Stahl; Gerhard Schratt; Bertil Glader; Karen Backer; Carolyn Wong; David G. Nathan; Alan H. Beggs; Colin A. Sieff

Diamond-Blackfan anemia (DBA) is a rare congenital red-cell aplasia characterized by anemia, bone-marrow erythroblastopenia, and congenital anomalies and is associated with heterozygous mutations in the ribosomal protein (RP) S19 gene (RPS19) in approximately 25% of probands. We report identification of de novo nonsense and splice-site mutations in another RP, RPS24 (encoded by RPS24 [10q22-q23]) in approximately 2% of RPS19 mutation-negative probands. This finding strongly suggests that DBA is a disorder of ribosome synthesis and that mutations in other RP or associated genes that lead to disrupted ribosomal biogenesis and/or function may also cause DBA.


Blood | 2008

Abnormalities of the large ribosomal subunit protein, Rpl35A, in diamond-blackfan anemia

Jason E. Farrar; Michelle Nater; Emi Caywood; Michael A. McDevitt; Jeanne Kowalski; Clifford M. Takemoto; C. Conover Talbot; Paul S. Meltzer; Diane Esposito; Alan H. Beggs; Hal E. Schneider; Agnieszka Grabowska; Sarah E. Ball; Edyta Niewiadomska; Colin A. Sieff; Adrianna Vlachos; Eva Atsidaftos; Steven R. Ellis; Jeffrey M. Lipton; Hanna T. Gazda; Robert J. Arceci

Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression microarray in the analysis of 2 DBA patients with chromosome 3q deletions to identify RPL35A as a potential DBA gene. Sequence analysis of a cohort of DBA probands confirmed involvement RPL35A in DBA. shRNA inhibition shows that Rpl35a is essential for maturation of 28S and 5.8S rRNAs, 60S subunit biogenesis, normal proliferation, and cell survival. Analysis of pre-rRNA processing in primary DBA lymphoblastoid cell lines demonstrated similar alterations of large ribosomal subunit rRNA in both RPL35A-mutated and some RPL35A wild-type patients, suggesting additional large ribosomal subunit gene defects are likely present in some cases of DBA. These data demonstrate that alterations of large ribosomal subunit proteins cause DBA and support the hypothesis that DBA is primarily the result of altered ribosomal function. The results also establish that haploinsufficiency of large ribosomal subunit proteins contributes to bone marrow failure and potentially cancer predisposition.


American Journal of Human Genetics | 2010

Ribosomal Protein Genes RPS10 and RPS26 Are Commonly Mutated in Diamond-Blackfan Anemia

Leana Doherty; Mee Rie Sheen; Adrianna Vlachos; Valérie Choesmel; Marie-Françoise O'Donohue; Catherine Clinton; Hal E. Schneider; Colin A. Sieff; Peter E. Newburger; Sarah E. Ball; Edyta Niewiadomska; Michał Matysiak; Bertil Glader; Robert J. Arceci; Jason E. Farrar; Eva Atsidaftos; Jeffrrey M. Lipton; Pierre-Emmanuel Gleizes; Hanna T. Gazda

Diamond-Blackfan anemia (DBA), an inherited bone marrow failure syndrome characterized by anemia that usually presents before the first birthday or in early childhood, is associated with birth defects and an increased risk of cancer. Although anemia is the most prominent feature of DBA, the disease is also characterized by growth retardation and congenital malformations, in particular craniofacial, upper limb, heart, and urinary system defects that are present in approximately 30%-50% of patients. DBA has been associated with mutations in seven ribosomal protein (RP) genes, RPS19, RPS24, RPS17, RPL35A, RPL5, RPL11, and RPS7, in about 43% of patients. To continue our large-scale screen of RP genes in a DBA population, we sequenced 35 ribosomal protein genes, RPL15, RPL24, RPL29, RPL32, RPL34, RPL9, RPL37, RPS14, RPS23, RPL10A, RPS10, RPS12, RPS18, RPL30, RPS20, RPL12, RPL7A, RPS6, RPL27A, RPLP2, RPS25, RPS3, RPL41, RPL6, RPLP0, RPS26, RPL21, RPL36AL, RPS29, RPL4, RPLP1, RPL13, RPS15A, RPS2, and RPL38, in our DBA patient cohort of 117 probands. We identified three distinct mutations of RPS10 in five probands and nine distinct mutations of RPS26 in 12 probands. Pre-rRNA analysis in lymphoblastoid cells from patients bearing mutations in RPS10 and RPS26 showed elevated levels of 18S-E pre-rRNA. This accumulation is consistent with the phenotype observed in HeLa cells after knockdown of RPS10 or RPS26 expression with siRNAs, which indicates that mutations in the RPS10 and RPS26 genes in DBA patients affect the function of the proteins in rRNA processing.


Blood | 2012

Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry

Adrianna Vlachos; Philip S. Rosenberg; Eva Atsidaftos; Blanche P. Alter; Jeffrey M. Lipton

Diamond Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by red cell aplasia and congenital anomalies. A predisposition to cancer has been suggested but not quantified by case reports. The DBA Registry of North America (DBAR) is the largest established DBA patient cohort, with prospective follow-up since 1991. This report presents the first quantitative assessment of cancer incidence in DBA. Among 608 patients with 9458 person-years of follow-up, 15 solid tumors, 2 acute myeloid leukemias, and 2 cases of myelodysplastic syndrome were diagnosed at a median age of 41 years in patients who had not received a bone marrow transplant. Cancer incidence in DBA was significantly elevated. The observed-to- expected ratio for all cancers combined was 5.4 (P < .05); significant observed-to-expected ratios were 287 for myelodysplastic syndrome, 28 for acute myeloid leukemia, 36 for colon carcinoma, 33 for osteogenic sarcoma, and 12 for female genital cancers. The median survival was 56 years, and the cumulative incidence of solid tumor/leukemia was approximately 20% by age 46 years. As in Fanconi anemia and dyskeratosis congenita, DBA is both an inherited bone marrow failure syndrome and a cancer predisposition syndrome; cancer risks appear lower in DBA than in Fanconi anemia or dyskeratosis congenita. This trial was registered at www.clinicaltrials.gov as #NCT00106015.


Human Mutation | 2010

The ribosomal basis of diamond‐blackfan anemia: mutation and database update

Ilenia Boria; Emanuela Garelli; Hanna T. Gazda; Anna Aspesi; Paola Quarello; Elisa Pavesi; Daniela Ferrante; Joerg J. Meerpohl; Mutlu Kartal; Lydie Da Costa; Alexis Proust; Thierry Leblanc; Maud Simansour; Niklas Dahl; Anne-Sophie Fröjmark; Dagmar Pospisilova; Radek Cmejla; Alan H. Beggs; Mee Rie Sheen; Michael Landowski; Christopher Buros; Catherine Clinton; Lori J. Dobson; Adrianna Vlachos; Eva Atsidaftos; Jeffrey M. Lipton; Steven R. Ellis; Ugo Ramenghi; Irma Dianzani

Diamond‐Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype–phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database. Hum Mutat 31:1269–1279, 2010.


Pediatric Blood & Cancer | 2006

Improving clinical care and elucidating the pathophysiology of diamond blackfan anemia : An update from the diamond blackfan anemia registry

Jeffrey M. Lipton; Eva Atsidaftos; Israel Zyskind; Adrianna Vlachos

Diamond Blackfan anemia (DBA) is a heterogeneous genetic disorder characterized by red cell aplasia, congenital anomalies, and a predisposition to cancer. Although incompletely understood, the erythroid failure in DBA appears to result from the accelerated apoptosis of affected erythroid progenitors/precursors. One of what appears to be multiple DBA genes, coding for a ribosomal protein RPS 19, has been cloned. Even within multiplex families individuals may vary dramatically as to the degree of anemia, response to treatment and the presence of congenital anomalies. The Diamond Blackfan Anemia Registry (DBAR), a comprehensive database of pediatric and adult patients with DBA who are enrolled after informed consent, was designed to overcome two significant obstacles encountered in the study of a rare disease; the reporting bias inherent in the literature and the lack of an active patient database. To enroll, patients, their families and their physicians complete a detailed questionnaire. A review of medical records and telephone interviews are performed to complete and clarify the information provided. As of May 1, 2005, 420 patients have been enrolled in the DBAR. Epidemiological, clinical, and laboratory data have been collected and analyzed. The DBAR has provided new information on the clinical presentation, outcome and genetics of DBA as well as a better description of congenital malformations and cancer predisposition. This has resulted both in improved clinical care of patients with DBA as well as providing new insights into the pathophysiology of this complex disorder.


Human Mutation | 2012

Frameshift mutation in p53 regulator RPL26 is associated with multiple physical abnormalities and a specific pre-ribosomal RNA processing defect in diamond–blackfan anemia†

Hanna T. Gazda; Milena Preti; Mee Rie Sheen; Marie-Françoise O'Donohue; Adrianna Vlachos; Stella M. Davies; Antonis Kattamis; Leana Doherty; Michael Landowski; Christopher Buros; Roxanne Ghazvinian; Colin A. Sieff; Peter E. Newburger; Edyta Niewiadomska; Michał Matysiak; Bertil Glader; Eva Atsidaftos; Jeffrrey M. Lipton; Pierre-Emmanuel Gleizes; Alan H. Beggs

Diamond–Blackfan anemia (DBA) is an inherited form of pure red cell aplasia that usually presents in infancy or early childhood and is associated with congenital malformations in ∼30–50% of patients. DBA has been associated with mutations in nine ribosomal protein (RP) genes in about 53% of patients. We completed a large‐scale screen of 79 RP genes by sequencing 16 RP genes (RPL3, RPL7, RPL8, RPL10, RPL14, RPL17, RPL19, RPL23A, RPL26, RPL27, RPL35, RPL36A, RPL39, RPS4X, RPS4Y1, and RPS21) in 96 DBA probands. We identified a de novo two‐nucleotide deletion in RPL26 in one proband associated with multiple severe physical abnormalities. This mutation gives rise to a remarkable ribosome biogenesis defect that affects maturation of both the small and the large subunits. We also found a deletion in RPL19 and missense mutations in RPL3 and RPL23A, which may be variants of unknown significance. Together with RPL5, RPL11, and RPS7, RPL26 is the fourth RP regulating p53 activity that is linked to DBA. Hum Mutat 33:1037–1044, 2012.


Blood | 2011

Ribosomal protein gene deletions in Diamond-Blackfan anemia

Jason E. Farrar; Adrianna Vlachos; Eva Atsidaftos; Hannah Carlson-Donohoe; Thomas C. Markello; Robert J. Arceci; Steven R. Ellis; Jeffrey M. Lipton; David M. Bodine

Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.

Collaboration


Dive into the Eva Atsidaftos's collaboration.

Top Co-Authors

Avatar

Adrianna Vlachos

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Lipton

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Hanna T. Gazda

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Alan H. Beggs

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Colin A. Sieff

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Edyta Niewiadomska

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar

Jason E. Farrar

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge