Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Tannenbaum is active.

Publication


Featured researches published by Steven R. Tannenbaum.


Analytical Biochemistry | 1982

ANALYSIS OF NITRATE, NITRITE AND 15N NITRATE IN BIOLOGICAL FLUIDS

Laura C. Green; David A. Wagner; Joseph Glogowski; Paul L. Skipper; John S. Wishnok; Steven R. Tannenbaum

Abstract A new automated system for the analysis of nitrate via reduction with a high-pressure cadmium column is described. Samples of urine, saliva, deproteinized plasma, gastric juice, and milk can be analyzed for nitrate, nitrite, or both with a lower limit of detection of 1.0 nmol NO 3 − or NO 2 − /ml. The system allows quantitative reduction of nitrate and automatically eliminates interference from other compounds normally present in urine and other biological fluids. Analysis rate is 30 samples per hour, with preparation for most samples limited to simple dilution with distilled water. The application of gas chromatography/mass spectrometry for the analysis of 15 NO 3 − in urine after derivatization to 15 NO 2 -benzene is also described.


Mutation Research | 1999

The chemistry of DNA damage from nitric oxide and peroxynitrite

Samar Burney; Jennifer L. Caulfield; Jacquin C. Niles; John S. Wishnok; Steven R. Tannenbaum

Nitric oxide is a key participant in many physiological pathways; however, its reactivity gives it the potential to cause considerable damage to cells and tissues in its vicinity. Nitric oxide can react with DNA via multiple pathways. Once produced, subsequent conversion of nitric oxide to nitrous anhydride and/or peroxynitrite can lead to the nitrosative deamination of DNA bases such as guanine and cytosine. Complex oxidation chemistry can also occur causing DNA base and sugar oxidative modifications. This review describes the different mechanisms by which nitric oxide can damage DNA. First, the physiological significance of nitric oxide is discussed. Details of nitric oxide and peroxynitrite chemistry are then given. The final two sections outline the mechanisms underlying DNA damage induced by nitric oxide and peroxynitrite.


Current Drug Metabolism | 2005

A Microscale In Vitro Physiological Model of the Liver: Predictive Screens for Drug Metabolism and Enzyme Induction

A. Sivaraman; J. K. Leach; S. Townsend; T. Iida; B. J. Hogan; Donna B. Stolz; Rebecca C. Fry; Leona D. Samson; Steven R. Tannenbaum; Linda G. Griffith

In vitro models of the liver using isolated primary hepatocytes have been used as screens for measuring the metabolism, toxicity and efficacy of xenobiotics, for studying hepatocyte proliferation, and as bioartificial liver support systems. Yet, primary isolated hepatocytes rapidly lose liver specific functions when maintained under standard in vitro cell culture conditions. Many modifications to conventional culture methods have been developed to foster retention of hepatocyte function. Still, not all of the important functions -- especially the biotransformation functions of the liver -- can as yet be replicated at desired levels, prompting continued development of new culture systems. In the first part of this article, we review primary hepatocyte in vitro systems used in metabolism and enzyme induction studies. We then describe a scalable microreactor system that fosters development of 3D-perfused micro-tissue units and show that primary rat cells cultured in this system are substantially closer to native liver compared to cells cultured by other in vitro methods, as assessed by a broad spectrum of gene expression, protein expression and biochemical activity metrics. These results provide a foundation for extension of this culture model to other applications in drug discovery -- as a model to study drug-drug interactions, as a model for the assessment of acute and chronic liver toxicity arising from exposure to drugs or environmental agents; and as a disease model for the study of viral hepatitis infection and cancer metastasis.


Nature Nanotechnology | 2007

A patterned anisotropic nanofluidic sieving structure for continuous-flow separation of DNA and proteins

Jianping Fu; Reto B. Schoch; Anna L. Stevens; Steven R. Tannenbaum; Jongyoon Han

Microfabricated regular sieving structures hold great promise as an alternative to gels to improve the speed and resolution of biomolecule separation. In contrast to disordered porous gel networks, these regular structures also provide well defined environments ideal for the study of molecular dynamics in confining spaces. However, the use of regular sieving structures has, to date, been limited to the separation of long DNA molecules, however separation of smaller, physiologically relevant macromolecules, such as proteins, still remains a challenge. Here we report a microfabricated anisotropic sieving structure consisting of a two-dimensional periodic nanofluidic filter array. The designed structural anisotropy causes different-sized or -charged biomolecules to follow distinct trajectories, leading to efficient separation. Continuous-flow size-based separation of DNA and proteins, as well as electrostatic separation of proteins, was achieved, demonstrating the potential use of this device as a generic molecular sieving structure for an integrated biomolecule sample preparation and analysis system.


Biochimica et Biophysica Acta | 1996

THE ROLE OF NITRIC OXIDE (NO) IN THE CARCINOGENIC PROCESS

Snait Tamir; Steven R. Tannenbaum

The inflammatory process has long been known to be a risk factor for human cancers, particularly of the lung, bladder, colon, stomach, and female breast. Earlier hypothesis cited production of oxygen radicals, release of cytokines, and synthesis of prostaglandins and leukotrienes as biochemical modulators of the carcinogenic process. The discovery of NO. as a product of cells in the immune system has implicated this chemical in the mechanism of carcinogenesis, particularly when NO. is overproduced over a long period of time. After briefly reviewing the important chemical reactions of NO. under physiological conditions, we examine how the chemistry of its key reactants toward biologically important molecules relate to DNA damage and cytotoxicity. In these two processes, NO may play an important role in currently accepted models of multistage carcinogenesis.


Nature Chemistry | 2009

The rational design of nitric oxide selectivity in single-walled carbon nanotube near infrared fluorescence sensors for biological detection

Jong-Ho Kim; Daniel A. Heller; Hong Jin; Paul W. Barone; Changsik Song; Jingqing Zhang; Laura J. Trudel; Gerald N. Wogan; Steven R. Tannenbaum; Michael S. Strano

A major challenge in the synthesis of nanotube or nanowire sensors is to impart selective analyte binding through means other than covalent linkages, which compromise electronic and optical properties. We synthesized a 3,4-diaminophenyl-functionalized dextran (DAP-dex) wrapping for single-walled carbon nanotubes (SWNTs) that imparts rapid and selective fluorescence detection of nitric oxide (NO), a messenger for biological signalling. The near-infrared (nIR) fluorescence of SWNT(DAP-dex) is immediately and directly bleached by NO, but not by other reactive nitrogen and oxygen species. This bleaching is reversible and shown to be caused by electron transfer from the top of the valence band of the SWNT to the lowest unoccupied molecular orbital of NO. The resulting optical sensor is capable of real-time and spatially resolved detection of NO produced by stimulating NO synthase in macrophage cells. We also demonstrate the potential of the optical sensor for in vivo detection of NO in a mouse model.


Free Radical Biology and Medicine | 1996

No-induced oxidative stress and glutathione metabolism in rodent and human cells

Steven A. Luperchio; Snait Tamir; Steven R. Tannenbaum

Nitric oxide (NO.), a radical species produced by many types of cells, is known to play a critical role in both regulatory processes and cell defense, yet it may also participate in collateral reactions, leading to DNA damage and cell death in both NO-generating and neighboring cells. Glutathione has been shown to protect cells from the toxic effects of free radicals and reactive oxygen species. The goal of this study was to investigate whether differences in glutathione metabolism could account for the resistance or sensitivity to cell killing by NO.. The cytotoxic effect of NO. was examined in CHO-AA8 (Chinese Hamster Ovary) cells and TK6 (human lymphoblastoid) cells pretreated with L-buthionine SR-sulfoximine (BSO), a potent inhibitor of gamma-glutamylcysteine synthetase, and with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU), an irreversible inhibitor of glutathione reductase. The consequences resulting from the depletion of glutathione levels and from the arrest of oxidoreduction allowed us to show the involvement of glutathione in protecting cells from NO. and to investigate the importance of changes in glutathione metabolism on NO-induced toxicity. In CHO-AA8 cells, we found that treatment with NO. resulted in the oxidation of reduced glutathione (GSH) to oxidized glutathione (GSSG) and to mixed glutathione disulfides (GSSR). The resulting depletion of GSH stimulated its de novo synthesis, enabling the cells to resist killing by NO.. A slight difference in GSH metabolism was observed in TK6 cells. NO. led to an increase in GSSG levels similar to that observed in CHO-AA8 cells, however, a decrease in GSH levels, no change in GSSR levels, and higher levels of toxicity were also found, suggesting that NO-treated TK6 cells are not as competent in GSH homeostasis as CHO cells. We conclude that GSH is involved in protecting cells from killing by NO. and that both de novo synthesis of GSH and GSSG reduction are important in maintaining an adequate level of protection for the cells.


Environmental Health Perspectives | 2014

Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis.

Kun Lu; Ryan Abo; Katherine Ann Schlieper; Michelle E. Graffam; Stuart S. Levine; John S. Wishnok; James A. Swenberg; Steven R. Tannenbaum; James G. Fox

Background: The human intestine is host to an enormously complex, diverse, and vast microbial community—the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. Objectives: We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. Methods: We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry–based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. Results: 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora–related metabolites being perturbed in multiple biological matrices. Conclusions: Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Citation: Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284–291; http://dx.doi.org/10.1289/ehp.1307429


The American Journal of Clinical Nutrition | 1991

Inhibition of nitrosamine formation by ascorbic acid.

Steven R. Tannenbaum; John S. Wishnok; Cynthia D. Leaf

Nitrosation occurs under a wide variety of conditions by reaction of most types of amines with any of a large number of nitrosating species. Nitrite can be formed in vivo via bacterial reduction of nitrate and by activated macrophages and endothelial cells. The mechanism of nitrite formation by mammalian cells is via enzymatic oxidation of arginine to NO followed by oxidation to N2O3 and N2O4. Nitrosatable amines are found in many foods and some, eg, dimethylamine, are synthesized in the body. Precursors of N-nitroso compounds are thus almost constantly present together under favorable reaction conditions in vivo and there is, consequently, considerable interest concerning possible human health risks arising from endogenous formation of this class of compounds. Among many nitrosation inhibitors, most attention has focused on ascorbic acid, which reacts with many nitrosating agents and which is virtually nontoxic. This presentation discusses the chemistry of ascorbic acid inhibition of nitrosation reactions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer

Aswin Mangerich; Charles G. Knutson; Nicola Parry; Sureshkumar Muthupalani; Wenjie Ye; Erin G. Prestwich; Liang Cui; Jose Luis McFaline; Melissa W. Mobley; Zhongming Ge; Koli Taghizadeh; John S. Wishnok; Gerald N. Wogan; James G. Fox; Steven R. Tannenbaum; Peter C. Dedon

Helicobacter hepaticus-infected Rag2-/- mice emulate many aspects of human inflammatory bowel disease, including the development of colitis and colon cancer. To elucidate mechanisms of inflammation-induced carcinogenesis, we undertook a comprehensive analysis of histopathology, molecular damage, and gene expression changes during disease progression in these mice. Infected mice developed severe colitis and hepatitis by 10 wk post-infection, progressing into colon carcinoma by 20 wk post-infection, with pronounced pathology in the cecum and proximal colon marked by infiltration of neutrophils and macrophages. Transcriptional profiling revealed decreased expression of DNA repair and oxidative stress response genes in colon, but not in liver. Mass spectrometric analysis revealed higher levels of DNA and RNA damage products in liver compared to colon and infection-induced increases in 5-chlorocytosine in DNA and RNA and hypoxanthine in DNA. Paradoxically, infection was associated with decreased levels of DNA etheno adducts. Levels of nucleic acid damage from the same chemical class were strongly correlated in both liver and colon. The results support a model of inflammation-mediated carcinogenesis involving infiltration of phagocytes and generation of reactive species that cause local molecular damage leading to cell dysfunction, mutation, and cell death. There are strong correlations among histopathology, phagocyte infiltration, and damage chemistry that suggest a major role for neutrophils in inflammation-associated cancer progression. Further, paradoxical changes in nucleic acid damage were observed in tissue- and chemistry-specific patterns. The results also reveal features of cell stress response that point to microbial pathophysiology and mechanisms of cell senescence as important mechanistic links to cancer.

Collaboration


Dive into the Steven R. Tannenbaum's collaboration.

Top Co-Authors

Avatar

Paul L. Skipper

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John S. Wishnok

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gerald N. Wogan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James G. Fox

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rosa G. Liberman

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter C. Dedon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mimi C. Yu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge