Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Webb is active.

Publication


Featured researches published by Steven R. Webb.


Immunology and Cell Biology | 2005

The next 15 years: Taking plant-made vaccines beyond proof of concept

Dwayne D Kirk; Steven R. Webb

Significant potential advantages are associated with the production of vaccines in transgenic plants; however, no commercial product has emerged. An analysis of the strengths, weaknesses, opportunities and threats for plant‐made vaccine technology is provided. The use of this technology for human vaccines will require significant investment and developmental efforts that cannot be supported entirely by the academic sector and is not currently supported financially by industry. A focus on downstream aspects to define potential products, conduct of additional basic clinical testing, and the incorporation of multidisciplinary strategic planning would accelerate the potential for commercialization in this field. Estimates of production cost per dose and volume of production are highly variable for a model vaccine produced in transgenic tomato, and can be influenced by the optimization of many factors. Commercialization of plant‐made vaccine technology is likely to be led by the agricultural biotechnology sector rather than the pharmaceutical sector due to the disruptive nature of the technology and the complex intellectual property landscape. The next major milestones will be conduct of a phase II human clinical trial and demonstration of protection in humans. The achievement of these milestones would be accelerated by further basic investigation into mucosal immunity, the codevelopment of oral adjuvants, and the integration of quality control standards and good manufacturing practices for the production of preclinical and clinical batch materials.


Plant Biotechnology Journal | 2016

Targeted gene exchange in plant cells mediated by a zinc finger nuclease double cut

Katja Schneider; Andreas Schiermeyer; Anja Dolls; Natalie Koch; Denise Herwartz; Janina Kirchhoff; Rainer Fischer; Sean M. Russell; Zehui Cao; David R. Corbin; Lakshmi Sastry-Dent; W. Michael Ainley; Steven R. Webb; Helga Schinkel; Stefan Schillberg

Genome modification by homology-directed repair (HDR) is an attractive tool for the controlled genetic manipulation of plants. Here, we report the HDR-mediated gene exchange of expression cassettes in tobacco BY-2 cells using a designed zinc finger nuclease (ZFN). The target contained a 7-kb fragment flanked by two ZFN cutting sites. That fragment was replaced with a 4-kb donor cassette, which integrates gene markers for selection (kanamycin resistance) and for scoring targeting (red fluorescent protein, RFP). Candidates resulting from cassette exchange were identified by molecular analysis of calli generated by transformation via direct DNA delivery. The precision of HDR-mediated donor integration was evaluated by Southern blot analysis, sequencing of the integration locus and analysis of RFP fluorescence by flow cytometry. Screening of 1326 kanamycin-resistant calli yielded 18 HDR events, 16 of which had a perfect cassette exchange at the insert junction and 13 of which produced functional RFP. Our results demonstrate that ZFN-based HDR can be used for high frequency, precise, targeted exchange of fragments of sizes that are commercially relevant in plants.


Avian Pathology | 2012

Safety and immunogenicity of bacterial and tobacco plant cell line derived recombinant native and mutant Escherichia coli heat-labile toxin in chickens

Timothy J. Miller; Matthew J. Fanton; Stephanie Nickelson; Hugh S. Mason; Steven R. Webb

The safety and immunogenicity of the mammalian mucosal adjuvants, Escherichia coli wild-type heat-labile holotoxin (LT) and E. coli mutant LT (LTA-K63/LTB), were examined in 1-day-old chicks and 10-day-old to 21-day-old broilers. Biologically active, E. coli recombinant wild-type LT and recombinant LTA-K63/LTB produced in a transgenic Nicotiana tabacum (NT-1) tobacco cell line (SLT102) were tested for safety and antigenicity following various routes of administration. Safety was assessed by clinical signs, body weight gain, gross organ pathology and wet organ weight, and histopathology. Antigenicity was assessed using LT-B-specific serum IgG enzyme-linked immunosorbent assay. Parenteral administration of E. coli recombinant wild-type LT did not have any discernible effect on bird health and was well tolerated at levels up to 400 µg per dose. Recombinant, SLT102-derived mutant LT derived from SLT102 cells retained in vitro ganglioside binding and was safe and antigenic following repeated mucosal administration to birds. The highest systemic LT-B-specific IgG titres were detected in birds that received three on-feed doses of SLT102-derived mutant LT. Among the various SLT102-derived mutant LT preparations tested, whole, wet cells or whole cell lysates were the most antigenic. These results demonstrate for the first time that E. coli-derived recombinant, wild-type LT holotoxin is well tolerated following multiple administrations to young birds at body weight doses previously reported to be enteropathogenic and toxic in mammalian species. Moreover, these data also demonstrate the feasibility of using recombinant wild-type and mutant LT produced in transgenic NT-1 tobacco cells as safe and potent vaccine adjuvants in poultry.


Theoretical and Applied Genetics | 2017

Exome sequence genotype imputation in globally diverse hexaploid wheat accessions

Fan Shi; Josquin Tibbits; Raj K. Pasam; Pippa Kay; Debbie Wong; Joanna Petkowski; Kerrie L. Forrest; Ben J. Hayes; Alina Akhunova; John P. Davies; Steven R. Webb; German Spangenberg; Eduard Akhunov; Matthew J. Hayden; Hans D. Daetwyler

Key messageImputing genotypes from the 90K SNP chip to exome sequence in wheat was moderately accurate. We investigated the factors that affect imputation and propose several strategies to improve accuracy.AbstractImputing genetic marker genotypes from low to high density has been proposed as a cost-effective strategy to increase the power of downstream analyses (e.g. genome-wide association studies and genomic prediction) for a given budget. However, imputation is often imperfect and its accuracy depends on several factors. Here, we investigate the effects of reference population selection algorithms, marker density and imputation algorithms (Beagle4 and FImpute) on the accuracy of imputation from low SNP density (9K array) to the Infinium 90K single-nucleotide polymorphism (SNP) array for a collection of 837 hexaploid wheat Watkins landrace accessions. Based on these results, we then used the best performing reference selection and imputation algorithms to investigate imputation from 90K to exome sequence for a collection of 246 globally diverse wheat accessions. Accession-to-nearest-entry and genomic relationship-based methods were the best performing selection algorithms, and FImpute resulted in higher accuracy and was more efficient than Beagle4. The accuracy of imputing exome capture SNPs was comparable to imputing from 9 to 90K at approximately 0.71. This relatively low imputation accuracy is in part due to inconsistency between 90K and exome sequence formats. We also found the accuracy of imputation could be substantially improved to 0.82 when choosing an equivalent number of exome SNP, instead of 90K SNPs on the existing array, as the lower density set. We present a number of recommendations to increase the accuracy of exome imputation.


Plant Biotechnology Journal | 2018

Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template

Yidong Ran; Nicola J. Patron; Pippa Kay; Debbie Wong; Margaret Buchanan; Yingying Cao; Tim Sawbridge; John P. Davies; John Mason; Steven R. Webb; German Spangenberg; William Michael Ainley; Terence A. Walsh; Matthew J. Hayden

Summary Sequence‐specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site‐specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)‐mediated, nonhomologous end‐joining (NHEJ)‐directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS‐inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss‐of‐function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN‐mediated changes were faithfully transmitted to the next generation.


Plant Biotechnology Journal | 2018

Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining

Nicholas D. Bonawitz; W. Michael Ainley; Asuka Itaya; Sivarama Reddy Chennareddy; Tobias Cicak; Katherine Effinger; Ke Jiang; Tejinder Kumar Mall; Pradeep Marri; J. Pon Samuel; Nagesh Sardesai; Matthew Simpson; Otto Folkerts; Rodrigo Sarria; Steven R. Webb; Delkin Orlando Gonzalez; Daina H. Simmonds; Dayakar Pareddy

Summary Emerging genome editing technologies hold great promise for the improvement of agricultural crops. Several related genome editing methods currently in development utilize engineered, sequence‐specific endonucleases to generate DNA double strand breaks (DSBs) at user‐specified genomic loci. These DSBs subsequently result in small insertions/deletions (indels), base substitutions or incorporation of exogenous donor sequences at the target site, depending on the application. Targeted mutagenesis in soybean (Glycine max) via non‐homologous end joining (NHEJ)‐mediated repair of such DSBs has been previously demonstrated with multiple nucleases, as has homology‐directed repair (HDR)‐mediated integration of a single transgene into target endogenous soybean loci using CRISPR/Cas9. Here we report targeted integration of multiple transgenes into a single soybean locus using a zinc finger nuclease (ZFN). First, we demonstrate targeted integration of biolistically delivered DNA via either HDR or NHEJ to the FATTY ACID DESATURASE 2‐1a (FAD2‐1a) locus of embryogenic cells in tissue culture. We then describe ZFN‐ and NHEJ‐mediated, targeted integration of two different multigene donors to the FAD2‐1a locus of immature embryos. The largest donor delivered was 16.2 kb, carried four transgenes, and was successfully transmitted to T1 progeny of mature targeted plants obtained via somatic embryogenesis. The insertions in most plants with a targeted, 7.1 kb, NHEJ‐integrated donor were perfect or near‐perfect, demonstrating that NHEJ is a viable alternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fertile transgenic soybean plants with NHEJ‐mediated targeted insertions of multigene donors at an endogenous genomic locus.


Plant Biotechnology Journal | 2013

Trait stacking via targeted genome editing

William Michael Ainley; Lakshmi Sastry-Dent; Mary E. Welter; Michael G. Murray; Bryan Zeitler; Rainier Amora; David R. Corbin; Rebecca Ruth Miles; Nicole L. Arnold; Tonya L. Strange; Matthew Simpson; Zehui Cao; Carley Carroll; Katherine S. Pawelczak; Ryan C. Blue; Kim West; Lynn M. Rowland; Douglas Perkins; Pon Samuel; Cristie M. Dewes; Liu Shen; Shreedharan Sriram; Steven L. Evans; Edward J. Rebar; Lei Zhang; Phillip D. Gregory; Fyodor D. Urnov; Steven R. Webb; Joseph F. Petolino


Archive | 2004

Stable immunoprophylactic and therapeutic compositions derived from transgenic plant cells and methods for production

Timothy J. Miller; Matthew J. Fanton; Steven R. Webb


Archive | 2013

Engineered transgene integration platform (etip) for gene targeting and trait stacking

Noel Cogan; John Forster; Matthew Hayden; Tim Sawbridge; German Spangenberg; Steven R. Webb; Manju Gupta; W Mike Ainley; Matthew J. Henry; John Mason; Sandeep Kumar; Stephen Novak


Archive | 2007

Novel selectable marker genes

Justin M. Lira; Terry R. Wright; Sean M. Russell; Donald J. Merlo; Steven R. Webb; Nicole L. Arnold; Andrew E. Robinson; Kelley A. Smith

Collaboration


Dive into the Steven R. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge