Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Schaffert is active.

Publication


Featured researches published by Steven Schaffert.


Immunological Reviews | 2013

Regulation of immune responses and tolerance: the microRNA perspective

Chang-Zheng Chen; Steven Schaffert; Rita Fragoso; Christina Loh

Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non‐coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR‐181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain‐ and loss‐of‐function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity.


PLOS Genetics | 2012

Modulating the Strength and Threshold of NOTCH Oncogenic Signals by mir-181a-1/b-1

Rita Fragoso; Tin Mao; Song Wang; Steven Schaffert; Xue Gong; Sibiao Yue; Richard Luong; Hyeyoung Min; Yumi Yashiro-Ohtani; Mark M. Davis; Chang Zheng Chen

Oncogenes, which are essential for tumor initiation, development, and maintenance, are valuable targets for cancer therapy. However, it remains a challenge to effectively inhibit oncogene activity by targeting their downstream pathways without causing significant toxicity to normal tissues. Here we show that deletion of mir-181a-1/b-1 expression inhibits the development of Notch1 oncogene-induced T cell acute lymphoblastic leukemia (T-ALL). mir-181a-1/b-1 controls the strength and threshold of Notch activity in tumorigenesis in part by dampening multiple negative feedback regulators downstream of NOTCH and pre-T cell receptor (TCR) signaling pathways. Importantly, although Notch oncogenes utilize normal thymic progenitor cell genetic programs for tumor transformation, comparative analyses of mir-181a-1/b-1 function in normal thymocyte and tumor development demonstrate that mir-181a-1/b-1 can be specifically targeted to inhibit tumor development with little toxicity to normal development. Finally, we demonstrate that mir-181a-1/b-1, but not mir-181a-2b-2 and mir-181-c/d, controls the development of normal thymic T cells and leukemia cells. Together, these results illustrate that NOTCH oncogene activity in tumor development can be selectively inhibited by targeting the molecular networks controlled by mir-181a-1/b-1.


Genome Research | 2011

MicroRNA programs in normal and aberrant stem and progenitor cells

Christopher P. Arnold; Ruoying Tan; Baiyu Zhou; Si Biao Yue; Steven Schaffert; Joseph R. Biggs; Regis Doyonnas; Miao Chia Lo; John M. Perry; Valérie M. Renault; Alessandra Sacco; Tim C.P. Somervaille; Patrick Viatour; Anne Brunet; Michael L. Cleary; Linheng Li; Julien Sage; Dong-Er Zhang; Helen M. Blau; Caifu Chen; Chang Zheng Chen

Emerging evidence suggests that microRNAs (miRNAs), an abundant class of ∼22-nucleotide small regulatory RNAs, play key roles in controlling the post-transcriptional genetic programs in stem and progenitor cells. Here we systematically examined miRNA expression profiles in various adult tissue-specific stem cells and their differentiated counterparts. These analyses revealed miRNA programs that are common or unique to blood, muscle, and neural stem cell populations and miRNA signatures that mark the transitions from self-renewing and quiescent stem cells to proliferative and differentiating progenitor cells. Moreover, we identified a stem/progenitor transition miRNA (SPT-miRNA) signature that predicts the effects of genetic perturbations, such as loss of PTEN and the Rb family, AML1-ETO9a expression, and MLL-AF10 transformation, on self-renewal and proliferation potentials of mutant stem/progenitor cells. We showed that some of the SPT-miRNAs control the self-renewal of embryonic stem cells and the reconstitution potential of hematopoietic stem cells (HSCs). Finally, we demonstrated that SPT-miRNAs coordinately regulate genes that are known to play roles in controlling HSC self-renewal, such as Hoxb6 and Hoxa4. Together, these analyses reveal the miRNA programs that may control key processes in normal and aberrant stem and progenitor cells, setting the foundations for dissecting post-transcriptional regulatory networks in stem cells.


BioTechniques | 2014

Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells.

Qiupeng Zheng; Xiaohong Cai; Meng How Tan; Steven Schaffert; Christopher P. Arnold; Xue Gong; Chang-Zheng Chen; Shenglin Huang

The prokaryotic type II CRISPR/Cas9 system has been adapted to perform targeted genome editing in cells and model organisms. Here, we describe targeted gene deletion and replacement in human cells via the CRISPR/Cas9 system using two guide RNAs. The system effectively generated targeted deletions of varied length, regardless of the transcriptional status of the target gene. It is notable that targeted gene deletions generated via CRISPR/Cas9 and two guide RNAs resulted in the formation of correct junctions at high efficiency. Moreover, in the presence of a homology repair donor, the CRISPR/Cas9 system could guide precise gene replacement. Our results illustrate that the CRISPR/Cas9 system can be used to precisely and effectively generate targeted deletions or gene replacement in human cells, which will facilitate characterization of functional domains in protein-coding genes as well as noncoding regulatory sequences in animal genomes.


Cancer Immunology, Immunotherapy | 2010

IL-12 enhances efficacy and shortens enrichment time in cytokine-induced killer cell immunotherapy

Mike W. Helms; Jennifer A. Prescher; Yu-An Cao; Steven Schaffert; Christopher H. Contag

Cytokine-induced killer (CIK) cells are T cell derived ex vivo expanded cells with both NK and T cell properties. They exhibit potent anti-tumor efficacy against various malignancies in preclinical models and have proven safe and effective in clinical studies. We combined CIK cell adoptive immunotherapy with IL-12 cytokine immunotherapy in an immunocompetent preclinical breast cancer model. Combining CIK cells with IL-12 increased anti-tumor efficacy in vivo compared to either therapy alone. Combination led to full tumor remission and long-term protection in 75% of animals. IL-12 treatment sharply increased the anti-tumor efficacy of short-term cultured CIK cells that exhibited no therapeutic effect alone. Bioluminescence imaging based in vitro cytotoxicity and in vivo homing assays revealed that short-term cultured CIK cells exhibit full cytotoxicity in vitro, but display different tumor homing properties than fully expanded CIK cells in vivo. Our data suggest that short-term cultured CIK cells can be “educated” in vivo, producing fully expanded CIK cells upon IL-12 administration with anti-tumor efficacy in a mouse model. Our findings demonstrate the potential to improve current CIK cell-based immunotherapy by increasing efficacy and shortening ex vivo expansion time. This holds promise for a highly efficacious cancer therapy utilizing synergistic effects of cytokine and cellular immunotherapy.


Immunologic Research | 2014

The interplay between Epstein-Barr virus and B lymphocytes: implications for infection, immunity, and disease

Olivia Hatton; Aleishia Harris‐Arnold; Steven Schaffert; Sheri M. Krams; Olivia M. Martinez

Human B cells are the primary targets of Epstein–Barr virus (EBV) infection. In most cases, EBV infection is asymptomatic because of a highly effective host immune response, but some individuals develop self-limiting infectious mononucleosis, while others develop EBV-associated lymphoid or epithelial malignancies. The viral and immune factors that determine the outcome of infection are not understood. The EBV life cycle includes a lytic phase, culminating in the production of new viral particles, and a latent phase, during which the virus remains largely silent for the lifetime of the host in memory B cells. Thus, in healthy individuals, there is a tightly orchestrated interplay between EBV and the host that allows the virus to persist. To promote viral persistence, EBV has evolved a variety of strategies to modulate the host immune response including inhibition of immune cell function, blunting of apoptotic pathways, and interfering with antigen processing and presentation pathways. In this article, we focus on mechanisms by which dysregulation of the host B cell and immune modulation by the virus can contribute to development of EBV+ B cell lymphomas.


Journal of Immunology | 2015

mir-181a-1/b-1 Modulates Tolerance through Opposing Activities in Selection and Peripheral T Cell Function

Steven Schaffert; Christina Loh; Song Wang; Christopher P. Arnold; Robert C. Axtell; Evan W. Newell; Garry P. Nolan; K. Mark Ansel; Mark M. Davis; Lawrence Steinman; Chang-Zheng Chen

Understanding the consequences of tuning TCR signaling on selection, peripheral T cell function, and tolerance in the context of native TCR repertoires may provide insight into the physiological control of tolerance. In this study, we show that genetic ablation of a natural tuner of TCR signaling, mir-181a-1/b-1, in double-positive thymocytes dampened TCR and Erk signaling and increased the threshold of positive selection. Whereas mir-181a-1/b-1 deletion in mice resulted in an increase in the intrinsic reactivity of naive T cells to self-antigens, it did not cause spontaneous autoimmunity. Loss of mir-181a-1/b-1 dampened the induction of experimental autoimmune encephalomyelitis and reduced basal TCR signaling in peripheral T cells and their migration from lymph nodes to pathogenic sites. Taken together, these results demonstrate that tolerance can be modulated by microRNA gene products through the control of opposing activities in T cell selection and peripheral T cell function.


Cell | 2018

Single-Cell Chromatin Modification Profiling Reveals Increased Epigenetic Variations with Aging

Peggie Cheung; Francesco Vallania; Hayley C. Warsinske; Michele Donato; Steven Schaffert; Sarah E. Chang; Mai Dvorak; Cornelia L. Dekker; Mark M. Davis; Paul J. Utz; Purvesh Khatri; Alex J. Kuo

Post-translational modifications of histone proteins and exchanges of histone variants of chromatin are central to the regulation of nearly all DNA-templated biological processes. However, the degree and variability of chromatin modifications in specific human immune cells remain largely unknown. Here, we employ a highly multiplexed mass cytometry analysis to profile the global levels of a broad array of chromatin modifications in primary human immune cells at the single-cell level. Our data reveal markedly different cell-type- and hematopoietic-lineage-specific chromatin modification patterns. Differential analysis between younger and older adults shows that aging is associated with increased heterogeneity between individuals and elevated cell-to-cell variability in chromatin modifications. Analysis of a twin cohort unveils heritability of chromatin modifications and demonstrates that aging-related chromatin alterations are predominantly driven by non-heritable influences. Together, we present a powerful platform for chromatin and immunology research. Our discoveries highlight the profound impacts of aging on chromatin modifications.


American Journal of Transplantation | 2017

Applying Mass Cytometry to the Analysis of Lymphoid Populations in Transplantation

Sheri M. Krams; Steven Schaffert; Audrey H. Lau; Olivia M. Martinez

Single‐cell flow cytometric techniques have been indispensable to improving our understanding of the phenotype and function of immune cell subsets that are important in both rejection and tolerance after transplant. Mass cytometry, or cytometry by time of flight, is a single‐cell–based platform that utilizes antibodies conjugated to rare heavy metal ions for analysis of cellular proteins by a time‐of‐flight mass spectrometer. This new technology allows for the evaluation of >40 simultaneous cellular parameters in a single sample because the limitation of spectral overlap, seen in conventional flow cytometry, is eliminated. In this review, we discuss the current state of mass cytometry, describe the advantages and disadvantages compared with multiparameter flow cytometry, introduce novel methods of high‐dimensional data analysis and visualization, and review some recent studies using mass cytometry to profile the immune systems of healthy people and transplant recipients.


bioRxiv | 2017

Leveraging heterogeneity across multiple data sets increases accuracy of cell-mixture deconvolution and reduces biological and technical biases

Francesco Vallania; Andrew Tam; Shane Lofgren; Steven Schaffert; Tej D. Azad; Erika Bongen; Meia Alsup; Michael N. Alonso; Mark M. Davis; Edgar G. Engleman; Purvesh Khatri

In silico quantification of cell proportions from mixed-cell transcriptomics data (deconvolution) requires a reference expression matrix, called basis matrix. We hypothesized that matrices created using only healthy samples from a single microarray platform would introduce biological and technical biases in deconvolution. We show presence of such biases in two existing matrices, IRIS and LM22, irrespective of the deconvolution method used. Here, we present immunoStates, a basis matrix built using 6160 samples with different disease states across 42 microarray platforms. We found that immunoStates significantly reduced biological and technical biases. We further show that cellular proportion estimates using immunoStates are consistently more correlated with measured proportions than IRIS and LM22, across all methods. Importantly, we found that different methods have virtually no effect once the basis matrix is chosen. Our results demonstrate the need and importance of incorporating biological and technical heterogeneity in a basis matrix for achieving consistently high accuracy.

Collaboration


Dive into the Steven Schaffert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge