Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Song Wang is active.

Publication


Featured researches published by Song Wang.


Journal of Biomolecular Structure & Dynamics | 2016

Insight into the interactive residues between two domains of human somatic Angiotensin-converting enzyme and Angiotensin II by MM-PBSA calculation and steered molecular dynamics simulation

Shanshan Guan; Weiwei Han; Hao Zhang; Song Wang; Yaming Shan

Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin–angiotensin-aldosterone and kallikrein–kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson–Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain–AngII complex is more stable than the N-domain–AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.


Journal of Chemical Information and Modeling | 2016

Structural Basis of Fullerene Derivatives as Novel Potent Inhibitors of Protein Tyrosine Phosphatase 1B: Insight into the Inhibitory Mechanism through Molecular Modeling Studies

Mengdan Qian; Yaming Shan; Shanshan Guan; Hao Zhang; Song Wang; Wei‐wei Han

Protein tyrosine phosphatase 1B (PTP1B) has become an outstanding target for the treatment of diabetes and obesity. Recent research has demonstrated that some fullerene derivatives serve as a new nanoscale-class of potent inhibitors of PTP1B, but the specific mechanism remains unclear. Several molecular modeling methods (molecular docking, molecular dynamics simulations, and molecular mechanics/generalized Born surface area calculations) were integrated to provide insight into the binding mode and inhibitory mechanism of the new class of fullerene inhibitors. The results reveal that PTP1B with an open WPD loop is more susceptible to the combination with the fullerene inhibitor because of their comparable shapes and sizes. When the WPD loop fluctuates to the open conformation, the inhibitor falls into the active pocket and induces conformational rotation of the WPD loop. This rotation is closely related to the reduction of the catalytic activity of PTP1B. In addition, it is suggested that compound 1, like compound 2, is a competitive inhibitor since it blocks the active site to prevent the binding of the substrate. The high binding affinity of fullerene-based compounds and the transition of the WPD loop, caused by the specific structural property of the hydrophobic fullerene core and the appended polar groups, make these fullerene derivatives efficient competitive inhibitors. The theoretical results provide useful clues for further investigation of the noval inhibitors of PTP1B at the nanoscale.


Journal of Structural Biology | 2016

Structural and molecular basis of cellulase Cel48F by computational modeling: Insight into catalytic and product release mechanism.

Mengdan Qian; Shanshan Guan; Yaming Shan; Hao Zhang; Song Wang

As a processive cellulase, Cel48F from Clostridium cellulolyticum plays a crucial role in cellulose fiber degradation. It has been confirmed in experiment that residue Glu44 will greatly affect the catalytic activity but the mechanism is still unknown. In this study, conventional molecular dynamics, steered molecular dynamics and free energy calculation were integrated to simulate the hydrolysis and product release process to gain insights into the factors that influence catalytic activity. Analysis of simulation results indicated that Glu44 could maintain the proper conformation of its substrate to ensure successful cleavage reaction or serve as a base required in the inverting mechanism in hydrolysis. After hydrolysis is completed, residues Glu44, Asp494, Trp611 and Glu55 participate in hydrogen bond rearrangement during product releasing process. This rearrangement can reduce the sliding barrier and stimulate the product to move toward the exit in the initial release stage. Dependent on the rearrangement, the product moves toward the exit and is exposed to an increasing amount of solvent molecules, which makes solvent effect more and more notable. With the assistance of solvent interaction, product can get rid of the enzyme more easily. However, the subsequent release process remains uncertain because of the disordered motion of solvent molecules. This work provides theoretical data as a basis of cellulase modification or mutation.


Journal of Structural Biology | 2010

Molecular dynamics simulations investigation of neocarzinostatin chromophore-releasing pathways from the holo-NCS protein

Xi Zhao; Song Wang; Xue-feng Gao; Xu-Ri Huang; Chia-Chung Sun

The enediyne ring chromophore with strong DNA cleavage activity of neocarzinostatin is labile and therefore stabilization by forming the complex (carrying protein+chromophore: holo-NCS). Holo-NCS has gained much attention in clinical use as well as for drug delivery systems, but the chromophore-releasing mechanism to trigger binding to the target DNA with high affinity and producing DNA damage remain unclear. Three possible pathways were initially determined by conventional MD, essential dynamics and essential dynamics sampling. One of the paths runs along the naphthoate moiety; another runs along the amino sugar moiety; the third along the enediyne ring. Further, calculated forces and time by FPMD (force-probe molecular dynamics) suggest that the opening of the naphthoate moiety is most favorable pathway and Leu45, Phe76 and Phe78 all are key residues for chromophore release. In addition, conformational analyses indicate that the chromophore release is only local motions for the protein.


Immunology Letters | 2016

Conserved stem fragment from H3 influenza hemagglutinin elicits cross-clade neutralizing antibodies through stalk-targeted blocking of conformational change during membrane fusion

Xin Gong; He Yin; Yuhua Shi; Shanshan Guan; Xiaoqiu He; Lan Yang; Yongjiao Yu; Ziyu Kuai; Chunlai Jiang; Wei Kong; Song Wang; Yaming Shan

Currently available influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies due to the mutability of virus sequences and conformational changes during protective immunity, thereby limiting their efficacy. This problem needs to be addressed by further understanding the mechanisms of neutralization and finding the desired neutralizing site during membrane fusion. This study specifically focused on viruses of the H3N2 subtype, which have persisted as a principal source of influenza-related morbidity and mortality in humans since the 1968 influenza pandemic. Through sequence alignment and epitope prediction, a series of highly conserved stem fragments (spanning 47 years) were found and coupled to the Keyhole Limpet Hemocyanin (KLH) protein. By application of a combinatorial display library and crystal structure modeling, a stem fragment immunogen, located at the turning point of the HA neck undergoing conformational change during membrane fusion with both B- and T-cell epitopes, was identified. After synthesis of the optimal stem fragment using a multiple antigen peptide (MAP) system, strong humoral immune responses and cross-clade neutralizing activities against strains from the H3 subtype of group 2 influenza viruses after animal immunizations were observed. By detection of nuclear protein immunofluorescence with acid bypass treatment, antisera raised against MAP4 immunogens of the stem fragment showed the potential to inhibit the conformational change of HA in stem-targeted virus neutralization. The identification of this conserved stem fragment provides great potential for exploitation of this site of vulnerability in therapeutic and vaccine design.


Scientific Reports | 2017

Exploration of binding and inhibition mechanism of a small molecule inhibitor of influenza virus H1N1 hemagglutinin by molecular dynamics simulation

Shanshan Guan; Tianao Wang; Ziyu Kuai; Mengdan Qian; Xiaopian Tian; Xiuqi Zhang; Yongjiao Yu; Song Wang; Hao Zhang; Hao Li; Wei Kong; Yaming Shan

Influenza viruses are a major public health threat worldwide. The influenza hemagglutinin (HA) plays an essential role in the virus life cycle. Due to the high conservation of the HA stem region, it has become an especially attractive target for inhibitors for therapeutics. In this study, molecular simulation was applied to study the mechanism of a small molecule inhibitor (MBX2329) of influenza HA. Behaviors of the small molecule under neutral and acidic conditions were investigated, and an interesting dynamic binding mechanism was found. The results suggested that the binding of the inhibitor with HA under neutral conditions facilitates only its intake, while it interacts with HA under acidic conditions using a different mechanism at a new binding site. After a series of experiments, we believe that binding of the inhibitor can prevent the release of HA1 from HA2, further maintaining the rigidity of the HA2 loop and stabilizing the distance between the long helix and short helices. The investigated residues in the new binding site show high conservation, implying that the new binding pocket has the potential to be an effective drug target. The results of this study will provide a theoretical basis for the mechanism of new influenza virus inhibitors.


Journal of Biomolecular Structure & Dynamics | 2017

Binding modes of phosphotriesterase-like lactonase complexed with δ-nonanoic lactone and paraoxon using molecular dynamics simulations

Shanshan Guan; Li Zhao; Hanyong Jin; Ning Shan; Weiwei Han; Song Wang; Yaming Shan

Phosphotriesterase-like lactonases (PLLs) have received much attention because of their physical and chemical properties. They may have widespread applications in various fields. For example, they show potential for quorum-sensing signaling pathways and organophosphorus (OP) detoxification in agricultural science. However, the mechanism by which PLLs hydrolyze, which involves OP compounds and lactones and a variety of distinct catalytic efficiencies, has only rarely been explored. In the present study, molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of DrPLL, a member of the PLL superfamily in Deinococcus radiodurans, bound to two substrates, δ-nonanoic lactone and paraoxon. It has been observed that there is a 16-fold increase in the catalytic efficiency of the two mutant strains of DrPLL (F26G/C72I) vs. the wild-type enzyme toward the hydrolysis of paraoxon, but an explanation for this behavior is currently lacking. The analysis of the molecular trajectories of DrPLL bound to δ-nonanoic lactone indicated that lactone-induced conformational changes take place in loop 8, which is near the active site. Binding to paraoxon may lead to conformational displacement of loop 1 residues, which could lead to the deformation of the active site and so trigger the entry of the paraoxon into the active site. The efficiency of the F26G/C72I mutant was increased by decreasing the displacement of loop 1 residues and increasing the flexibility of loop 8 residues. These results provide a molecular-level explanation for the experimental behavior.


Biochimie | 2016

A novel antimicrobial peptide derived from membrane-proximal external region of human immunodeficiency virus type 1

Xiaoqiu He; Huayan Zhang; Yuhua Shi; Xin Gong; Shanshan Guan; He Yin; Lan Yang; Yongjiao Yu; Ziyu Kuai; Dongni Liu; Rui Hua; Song Wang; Yaming Shan

With increasing microbial drug resistance worldwide, antimicrobial peptides (AMPs) are considered promising alternatives to addressing this problem. In this study, a series of synthetic peptides were designed based on the membrane-disrupting properties of the membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) envelope protein. The peptide AP16-A was found to exhibit the most effective antimicrobial activities against both Gram-negative and Gram-positive bacteria. The minimal bactericidal concentration (MBC) of AP16-A ranged from 2xa0μg/ml to 16xa0μg/ml. AP16-A had no detectable cytotoxicity in various tissue cultures and a mouse model. Furthermore, results of confocal fluorescence microscopy and the SYTOX Green uptake assay indicated that AP16-A killed Gram-negative bacteria by the combined effects of relatively slow membrane permeabilization and interaction with an intracellular target, while it killed Gram-positive bacteria by a fast membrane permeabilization process, which achieved relatively more rapid bacterial killing kinetics. The results of this study support the potential use of AP16-A as an AMP.


Journal of Biomolecular Structure & Dynamics | 2018

Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling

Houhou Huang; Fei Han; Shanshan Guan; Mengdan Qian; Yongfeng Wan; Yaming Shan; Hao Zhang; Song Wang

Glycoside hydrolase cellulase family 6 from Trichoderma reesei (TrCel6A) is an important cellobiohydrolase to hydrolyze cellooligosaccharide into cellobiose. The knowledge of enzymatic mechanisms is critical for improving the conversion efficiency of cellulose into ethanol or other chemicals. However, the process of product expulsion, a key component of enzymatic depolymerization, from TrCel6A has not yet been described in detail. Here, conventional molecular dynamics and steered molecular dynamics (SMD) were applied to study product expulsion from TrCel6A. Tyr103 may be a crucial residue in product expulsion given that it exhibits two different posthydrolytic conformations. In one conformation, Tyr103 rotates to open the −3 subsite. However, Tyr103 does not rotate in the other conformation. Three different routes for product expulsion were proposed on the basis of the two different conformations. The total energy barriers of the three routes were calculated through SMD simulations. The total energy barrier of product expulsion through Route 1, in which Tyr103 does not rotate, was 22.2 kcal·mol−1. The total energy barriers of product expulsion through Routes 2 and 3, in which Tyr103 rotates to open the −3 subsite, were 10.3 and 14.4 kcal·mol−1, respectively. Therefore, Routes 2 and 3 have lower energy barriers than Route 1, and Route 2 is the thermodynamically optimal route for product expulsion. Consequently, the rotation of Tyr103 may be crucial for product release from TrCel6A. Results of this work have potential applications in cellulase engineering.


Journal of Structural Biology | 2017

A novel small molecule displays two different binding modes during inhibiting H1N1 influenza A virus neuraminidases

Shanshan Guan; Yan Xu; Yongbo Qiao; Ziyu Kuai; Mengdan Qian; Xiaoyu Jiang; Song Wang; Hao Zhang; Wei Kong; Yaming Shan

Neuraminidase (NA) inhibitors can suppress NA activity to block the release of progeny virions and are effective against influenza viruses. As potential anti-flu drugs with unique functions, NA inhibitors are greatly concerned by the worldwide scientists. It has been reported recently that one of the novel quindoline derivatives named 7a, could inhibit both A/Puerto Rico/8/34 (H1N1) NA (NAPR) and A/California/04/09 (H1N1) NA (NACA). However, potential structure differences in the active site could be easily detected between the NAPR and NACA according to the flexibilities of their 150-loops located catalytic site. And no obvious 150-cavity could be observed in NACA crystal structure. In order to explore whether 7a could trigger the inhibition against these two NAs in the same way, a serial molecular dynamics simulation approach were applied in this study. The results indicated that 7a could be adopted under a relatively extended pose in the active center of NAPR. While in NACA-7a complex, the derivate preferred to be recognized and located on the side of active center. Interestingly, the potential of 7a was also found to be able to change the flexibility of the 150-loop in NACA that is absent of 150-cavity. Furthermore, a 150-cavity-like architecture could be induced in the active site of NACA. The results of this study revealed two kinds of binding modes of this novel small molecule inhibitor against NAs that might provide a theoretical basis for proposing novel inhibition mechanism and developing future influenza A virus inhibitors.

Collaboration


Dive into the Song Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge