Steven Shimizu
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven Shimizu.
Advanced Materials | 2012
Rishabh M. Jain; Rachel M. Howden; Kevin Tvrdy; Steven Shimizu; Andrew J. Hilmer; Thomas P. McNicholas; Karen K. Gleason; Michael S. Strano
We demonstrate a polymer-free carbon-based photovoltaic device that relies on exciton dissociation at the SWNT/C(60) interface, as shown in the figure. Through the construction of a carbon-based photovoltaic completely free of polymeric active or transport layers, we show both the feasibility of this novel device as well as inform the mechanisms for inefficiencies in SWNTs and carbon based solar cells.
Nature Communications | 2013
Wonjoon Choi; Zachary W. Ulissi; Steven Shimizu; Darin O. Bellisario; Mark D. Ellison; Michael S. Strano
Nanopores that approach molecular dimensions demonstrate exotic transport behaviour and are theoretically predicted to display discontinuities in the diameter dependence of interior ion transport because of structuring of the internal fluid. No experimental study has been able to probe this diameter dependence in the 0.5-2 nm diameter regime. Here we observe a surprising fivefold enhancement of stochastic ion transport rates for single-walled carbon nanotube centered at a diameter of approximately 1.6 nm. An electrochemical transport model informed from literature simulations is used to understand the phenomenon. We also observe rates that scale with cation type as Li(+)>K(+)>Cs(+)>Na(+) and pore blocking extent as K(+)>Cs(+)>Na(+)>Li(+) potentially reflecting changes in hydration shell size. Across several ion types, the pore-blocking current and inverse dwell time are shown to scale linearly at low electric field. This work opens up new avenues in the study of transport effects at the nanoscale.
Advanced Healthcare Materials | 2014
Jingqing Zhang; Sebastian Kruss; Andrew J. Hilmer; Steven Shimizu; Zeke Schmois; Flor De La Cruz; Paul W. Barone; Nigel F. Reuel; Daniel A. Heller; Michael S. Strano
Patients with chest pain account for 10% of US emergency room visits according to data from the Center for Disease Control and Prevention (2013). For triage of these patients, cardiac biomarkers troponin I and T are endorsed as standard indicators for acute myocardial infarction (AMI, or heart attack). Thus, there is significant interest in developing a rapid, point-of-care (POC) device for troponin detection. In this work, a rapid, quantitative, and label-free assay, which is specific for cardiac troponin T (cTnT) detection, using fluorescent single-walled carbon nanotubes (SWCNTs), is demonstrated. Chitosan-wrapped carbon nanotubes are cross-linked to form a thin gel that is further functionalized with nitrilotriacetic acid (NTA) moieties. Upon chelation of Ni(2+) , the Ni(2+) -NTA group binds to a hexa-histidine-modified troponin antibody, which specifically recognizes the target protein, troponin T. As the troponin T binds to the antibody, the local environment of the sensor changes, allowing direct troponin detection through intensity changes in SWCNT bandgap fluorescence. This platform represents the first near-infrared SWCNT sensor array for cTnT detection. Detection can be completed within 5 min, demonstrating a linear response to cTnT concentration and an experimental detection limit of 100 ng mL(-1) (2.5 nm). This platform provides a promising new tool for POC AMI detection in the future. Moreover, the work presents two new methods of quantifying the number of amines and carboxylic groups, respectively, in a carbon hydrogel matrices.
Nature Nanotechnology | 2017
Kumar Varoon Agrawal; Steven Shimizu; Lee W. Drahushuk; Daniel Kilcoyne; Michael S. Strano
Fluid phase transitions inside single, isolated carbon nanotubes are predicted to deviate substantially from classical thermodynamics. This behaviour enables the study of ice nanotubes and the exploration of their potential applications. Here we report measurements of the phase boundaries of water confined within six isolated carbon nanotubes of different diameters (1.05, 1.06, 1.15, 1.24, 1.44 and 1.52 nm) using Raman spectroscopy. The results reveal an exquisite sensitivity to diameter and substantially larger temperature elevations of the freezing transition (by as much as 100 °C) than have been theoretically predicted. Dynamic water filling and reversible freezing transitions were marked by 2-5 cm-1 shifts in the radial breathing mode frequency, revealing reversible melting bracketed to 105-151 °C and 87-117 °C for 1.05 and 1.06 nm single-walled carbon nanotubes, respectively. Near-ambient phase changes were observed for 1.44 and 1.52 nm nanotubes, bracketed between 15-49 °C and 3-30 °C, respectively, whereas the depression of the freezing point was observed for the 1.15 nm nanotube between -35 and 10 °C. We also find that the interior aqueous phase reversibly decreases the axial thermal conductivity of the nanotube by as much as 500%, allowing digital control of the heat flux.
Science | 2016
Pingwei Liu; Zhong Jin; Georgios Katsukis; Lee W. Drahushuk; Steven Shimizu; Chih-Jen Shih; Eric D. Wetzel; Joshua Taggart-Scarff; Bo Qing; Krystyn J. Van Vliet; Richard Li; Brian L. Wardle; Michael S. Strano
Stacking up the filler material In composite materials, a strong or stiff filler is added to a softer matrix to create a combined material with better mechanical or electrical properties. To minimize the filler content, it needs to be uniformly distributed in the composite, which is particularly challenging for nanoscale materials. Liu et al. alternately stacked sheets of graphene and polycarbonate to make a base composite. By further cutting and stacking, up to 320 aligned layers were made with a very uniform filler distribution. Alternatively, the initial stack could be rolled into a rod. In both cases, the properties exceeded what might be expected from a simple combination of the two materials. Science, this issue p. 364 Stacking and folding of layers of graphene and polycarbonate create a highly uniform, aligned composite. Two-dimensional (2D) materials can uniquely span the physical dimensions of a surrounding composite matrix in the limit of maximum reinforcement. However, the alignment and assembly of continuous 2D components at high volume fraction remain challenging. We use a stacking and folding method to generate aligned graphene/polycarbonate composites with as many as 320 parallel layers spanning 0.032 to 0.11 millimeters in thickness that significantly increases the effective elastic modulus and strength at exceptionally low volume fractions of only 0.082%. An analogous transverse shear scrolling method generates Archimedean spiral fibers that demonstrate exotic, telescoping elongation at break of 110%, or 30 times greater than Kevlar. Both composites retain anisotropic electrical conduction along the graphene planar axis and transparency. These composites promise substantial mechanical reinforcement, electrical, and optical properties at highly reduced volume fraction.
Journal of the American Chemical Society | 2011
Wonjoon Choi; Chang Young Lee; Moon Ho Ham; Steven Shimizu; Michael S. Strano
The ability to actively manipulate and transport single molecules in solution has the potential to revolutionize chemical synthesis and catalysis. In previous work, we developed a nanopore platform using the interior of a single-walled carbon nanotube (diameter = 1.5 nm) for the Coulter detection of single cations of Li(+), K(+), and Na(+). We demonstrate that as a result of their fabrication, such systems have electrostatic barriers present at their ends that are generally asymmetric, allowing for the trapping of ions. We show that above this threshold bias, traversing the nanopore end is not rate-limiting and that the pore-blocking behavior of two parallel nanotubes follows an idealized Markov process with the electrical potential. Such nanopores may allow for high-throughput linear processing of molecules as new catalysts and separation devices.
Langmuir | 2011
Steven Shimizu; Changsik Song; Michael S. Strano
Amine-grafted porous materials that capture CO2 from emission streams have been considered to be potential alternatives to the more energy-intensive liquid amine systems currently employed. An underappreciated fact in the uptake mechanism of these materials is that under dry, anhydrous conditions each CO2 molecule must react with two adjacent amine groups to adsorb onto the surface, which makes the configuration of amine groups on the surface critically important. Using this chemical mechanism, we developed a semiempirical adsorption isotherm equation that allows straightforward computation of the adsorption isotherm from an arbitrary surface configuration of grafted amines for honeycomb, square, and triangular lattices. The model makes use of the fact that the distribution of amines with respect to the number of nearest neighbors, referred to as the z-histogram, along with the amine loading and equilibrium constant, uniquely determine the adsorption characteristics to a very good approximation. This model was used to predict the range of uptakes possible just through surface configuration, and it was used to fit experimental data in the literature to give a meaningful equilibrium constant and show how efficiently amines were utilized. We also demonstrate how the model can be utilized to design more efficient nanostructured adsorbents and polymer-based adsorbents. Recommendations for exploiting the role of surface configuration include the use of linear instead of branched polyamines, higher amine grafting densities, the use of flexible, less bulky, long, and rotationally free amine groups, and increased silanol densities.
Langmuir | 2015
Steven Shimizu; Kumar Varoon Agrawal; Marcus O’Mahony; Lee W. Drahushuk; Neha Manohar; Allan S. Myerson; Michael S. Strano
Understanding phase transitions of fluids confined within nanopores is important for a wide variety of technological applications. It is well known that fluids confined in nanopores typically demonstrate freezing-point depressions, ΔTf, described by the Gibbs-Thomson (GT) equation. Herein, we highlight and correct several thermodynamic inconsistencies in the conventional use of the GT equation, including the fact that the enthalpy of melting, ΔHm, and the solid-liquid surface energy, γ(SL), are functions of pore diameter, complicating their prediction. We propose a theoretical analysis that employs the Turnbull coefficient, originally derived from metal nucleation theory, and show its consistency as a more reliable quantity for the prediction of ΔTf. This analysis provides a straightforward method to estimate ΔTf of nanoconfined organic fluids. As an example, we apply this technique to ibuprofen, an active pharmaceutical ingredient (API), and show that this theory fits well to the experimental ΔTf of nanoconfined ibuprofen.
Polymer Chemistry | 2013
Ji-Young Park; Lee W. Drahushuk; Moon-Ho Ham; Sang Wook Kang; Joon Hyun Baik; Steven Shimizu; Michael S. Strano; Changsik Song
Morphology control at the nanoscale is crucial for the application of polymer–nanomaterial hybrid composites. Phase separation of the constituents should be avoided when nanocomposites are prepared. In this work, highly dispersed single-walled carbon nanotubes (SWNTs) in polyimides are explored. We synthesized a variety of polyimides (PIs) based on 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and studied the resulting dispersion of single-walled carbon nanotubes (SWNTs) in N,N-dimethylacetamide (DMAc) solution of the PI. We found that the molecular structure plays an important role in dispersing SWNTs in PIs, and particularly biphenyl groups without ortho substituents are critical for dispersion in common organic solvents. SWNT dispersion in PI membranes rendered the membrane electrically conductive without causing phase separation. SWNT dispersion itself did not alter the permeability of CO2. We also found that the resistance across the membrane increased with response only to the CO2 flux. The polyimide–SWNT nanocomposites may find use in CO2 sensors, CO2 separation membranes, and antistatic coatings especially under high temperatures.
Journal of Physical Chemistry Letters | 2014
Andrew J. Hilmer; Darin O. Bellisario; Steven Shimizu; Thomas P. McNicholas; Qing Hua Wang; Scott A. Speakman; Michael S. Strano
Two novel, asymmetric methanofullerenes are presented, which self-assemble in cyclohexane upon thermal cycling to 80 °C. We show that, through the introduction of a dipeptide sequence to one terminus of the dendritic methanofullerene, it is possible to transform the assembly behavior of these molecules from poorly formed aggregates to high-aspect-ratio nanorods. These nanorods have diameters of 3.76 ± 0.52 nm and appear to be composed of interwoven helices of dendritic fullerenes. As evidenced by circular dichroism, the helicity is characterized by a preferential handedness of assembly, which is imparted by the dipeptide moiety.