Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven Suchting is active.

Publication


Featured researches published by Steven Suchting.


Nature | 2008

Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation

Tuomas Tammela; Georgia Zarkada; Elisabet Wallgard; Aino Murtomäki; Steven Suchting; Maria Wirzenius; Marika Waltari; Mats Hellström; Tibor Schomber; Reetta Peltonen; Catarina Freitas; Antonio Duarte; Helena Isoniemi; Pirjo Laakkonen; Gerhard Christofori; Seppo Ylä-Herttuala; Bronislaw Pytowski; Anne Eichmann; Christer Betsholtz; Kari Alitalo

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is a key process in several pathological conditions, including tumour growth and age-related macular degeneration. Vascular endothelial growth factors (VEGFs) stimulate angiogenesis and lymphangiogenesis by activating VEGF receptor (VEGFR) tyrosine kinases in endothelial cells. VEGFR-3 (also known as FLT-4) is present in all endothelia during development, and in the adult it becomes restricted to the lymphatic endothelium. However, VEGFR-3 is upregulated in the microvasculature of tumours and wounds. Here we demonstrate that VEGFR-3 is highly expressed in angiogenic sprouts, and genetic targeting of VEGFR-3 or blocking of VEGFR-3 signalling with monoclonal antibodies results in decreased sprouting, vascular density, vessel branching and endothelial cell proliferation in mouse angiogenesis models. Stimulation of VEGFR-3 augmented VEGF-induced angiogenesis and sustained angiogenesis even in the presence of VEGFR-2 (also known as KDR or FLK-1) inhibitors, whereas antibodies against VEGFR-3 and VEGFR-2 in combination resulted in additive inhibition of angiogenesis and tumour growth. Furthermore, genetic or pharmacological disruption of the Notch signalling pathway led to widespread endothelial VEGFR-3 expression and excessive sprouting, which was inhibited by blocking VEGFR-3 signals. Our results implicate VEGFR-3 as a regulator of vascular network formation. Targeting VEGFR-3 may provide additional efficacy for anti-angiogenic therapies, especially towards vessels that are resistant to VEGF or VEGFR-2 inhibitors.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching

Steven Suchting; Catarina Freitas; Ferdinand le Noble; Rui Benedito; Christiane Bréant; Antonio Duarte; Anne Eichmann

Delta-like 4 (Dll4) is a transmembrane ligand for Notch receptors that is expressed in arterial blood vessels and sprouting endothelial cells. Here we show that Dll4 regulates vessel branching during development by inhibiting endothelial tip cell formation. Heterozygous deletion of dll4 or pharmacological inhibition of Notch signaling using γ-secretase inhibitor revealed a striking vascular phenotype, with greatly increased numbers of filopodia-extending endothelial tip cells and increased expression of tip cell marker genes compared with controls. Filopodia extension in dll4+/− retinal vessels required the vascular growth factor VEGF and was inhibited when VEGF signaling was blocked. Although VEGF expression was not significantly altered in dll4+/− retinas, dll4+/− vessels showed increased expression of VEGF receptor 2 and decreased expression of VEGF receptor 1 compared with wild-type, suggesting they could be more responsive to VEGF stimulation. In addition, expression of dll4 in wild-type tip cells was itself decreased when VEGF signaling was blocked, indicating that dll4 may act downstream of VEGF as a “brake” on VEGF-mediated angiogenic sprouting. Taken together, these data reveal Dll4 as a negative regulator of vascular sprouting and vessel branching that is required for normal vascular network formation during development.


Journal of Cell Biology | 2010

Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3.

Yunling Xu; Li-li Yuan; Judy Mak; Luc Pardanaud; Maresa Caunt; Ian Kasman; Bruno Larrivée; Raquel del Toro; Steven Suchting; Alexander Medvinsky; Jillian M. Silva; Jian Yang; Jean-Léon Thomas; Alexander W. Koch; Kari Alitalo; Anne Eichmann; Anil Bagri

If neuropilin-2 and the growth factor VEGF-C don’t come together, lymphatic vessels don’t branch apart.


Circulation Research | 2009

Guidance of Vascular Development: Lessons From the Nervous System

Bruno Larrivée; Catarina Freitas; Steven Suchting; Isabelle Brunet; Anne Eichmann

The vascular system of vertebrates consists of an organized, branched network of arteries, veins, and capillaries that penetrates all the tissues of the body. One of the most striking features of the vascular system is that its branching pattern is highly stereotyped, with major and secondary branches forming at specific sites and developing highly conserved organ-specific vascular patterns. The factors controlling vascular patterning are not yet completely understood. Recent studies have highlighted the anatomic and structural similarities between blood vessels and nerves. The 2 networks are often aligned, with nerve fibers and blood vessels following parallel routes. Furthermore, both systems require precise control over their guidance and growth. Several molecules with attractive and repulsive properties have been found to modulate the proper guidance of both nerves and blood vessels. These include the Semaphorins, the Slits, and the Netrins and their receptors. In this review, we describe the molecular mechanisms by which blood vessels and axons achieve proper path finding and the molecular cues that are involved in their guidance.


Development | 2013

Dll4-Notch signaling determines the formation of native arterial collateral networks and arterial function in mouse ischemia models

Brunella Cristofaro; Yu Shi; Marcella Faria; Steven Suchting; Aurelie S. Leroyer; Alexandre Trindade; Antonio Duarte; Ann C. Zovein; M. Luisa Iruela-Arispe; Lina R. Nih; Nathalie Kubis; Daniel Henrion; Laurent Loufrani; Mihail Todiras; Johanna Schleifenbaum; Maik Gollasch; Zhen W. Zhuang; Michael Simons; Anne Eichmann; Ferdinand le Noble

Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4+/- mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4+/- mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.


Cell | 2009

Jagged Gives Endothelial Tip Cells an Edge

Steven Suchting; Anne Eichmann

Sprouting blood vessels have tip cells that lead and stalk cells that follow. Benedito et al. (2009) now show that competition between endothelial cells for the tip position is regulated by glycosylation of Notch receptors and by the opposing actions of the Notch ligands Jagged1 and Delta-like 4.


Experimental Cell Research | 2006

Neuronal clues to vascular guidance

Steven Suchting; Roy Bicknell; Anne Eichmann


Archive | 2006

Antibodies, polypeptides and uses thereof

Roy Bicknell; Steven Suchting; Lorna Mary Dyet Stewart


Novartis Foundation symposium | 2007

Negative regulators of vessel patterning.

Steven Suchting; Catarina Freitas; le Noble F; Benedito R; Christine Breant; Antonio Duarte; Anne Eichmann


Archive | 2003

Antibodies binding to human magic roundabout (mr), polypeptides and uses thereof for inhibition angiogenesis

Roy Bicknell; Steven Suchting; Lorna Mary Dyet Stewart

Collaboration


Dive into the Steven Suchting's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy Bicknell

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferdinand le Noble

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge