Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven W. Ruff is active.

Publication


Featured researches published by Steven W. Ruff.


Journal of Geophysical Research | 2001

Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

Philip R. Christensen; Joshua L. Bandfield; Victoria E. Hamilton; Steven W. Ruff; Hugh H. Kieffer; Timothy N. Titus; M. C. Malin; Richard V. Morris; Melissa D. Lane; R. L. Clark; Bruce M. Jakosky; Michael T. Mellon; John C. Pearl; Barney J. Conrath; Michael D. Smith; R. T. Clancy; Ruslan O. Kuzmin; Ted L. Roush; Greg L. Mehall; Noel Gorelick; K. Bender; K. Murray; S. Dason; E. Greene; Steven H. Silverman; M.I. Greenfield

The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-μm) interferometric spectrometer, along with broadband thermal (5.1- to 150-μm) and visible/near-IR (0.3- to 2.9-μm) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6×35.5×40.0 cm in size. The TES data are calibrated to a 1-σ precision of 2.5−6×10−8 W cm−2 sr−1/cm−1, 1.6×10−6 W cm−2 sr−1, and ∼0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ∼4×10−8 W cm−2 sr−1/cm−1 (0.5 K at 280 K), 1–2%, and ∼1–2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-μm) carbonates exposed at the surface at a detection limit of ∼10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of ∼10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ∼15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock.


Journal of Geophysical Research | 2000

Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water

Philip R. Christensen; Joshua L. Bandfield; Roger N. Clark; Kenneth S. Edgett; Victoria E. Hamilton; Todd M. Hoefen; Hugh H. Kieffer; Ruslan O. Kuzmin; Melissa D. Lane; M. C. Malin; Richard V. Morris; John C. Pearl; R. Pearson; Ted L. Roush; Steven W. Ruff; Michael D. Smith

The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (a-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350 -750 km in size centered near 28S latitude between 08 and 58W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and .525 cm21 and by the absence of silicate fundamentals in the 1000 cm 21 region. Spectral features resulting from atmospheric CO 2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (.5-10 mm). Diameters up to and greater than hundreds of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles ,5-10 mm in diameter (as either unpacked or hard-packed powders) fail to match the TES spectra. The spectrally derived areal abundance of hematite varies with particle size from ;10% (.30 mm diameter) to 40 - 60% (10 mm diameter). The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter ,5-10 mm), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse- grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.


Science | 2004

Mineralogy at Meridiani Planum from the Mini-TES experiment on the opportunity rover

Philip R. Christensen; Michael Bruce Wyatt; Timothy D. Glotch; A. D. Rogers; Saadat Anwar; Raymond E. Arvidson; Joshua L. Bandfield; Diana L. Blaney; Charles John Budney; Wendy M. Calvin; A. Fallacaro; R. L. Fergason; Noel Gorelick; T. G. Graff; Victoria E. Hamilton; Alexander G. Hayes; James Richard Johnson; Amy T. Knudson; Harry Y. McSween; Greg L. Mehall; L. K. Mehall; Jeffrey Edward Moersch; Richard V. Morris; M. D. Smith; S. W. Squyres; Steven W. Ruff; M. J. Wolff

The Miniature Thermal Emission Spectrometer (Mini-TES) on Opportunity investigated the mineral abundances and compositions of outcrops, rocks, and soils at Meridiani Planum. Coarse crystalline hematite and olivine-rich basaltic sands were observed as predicted from orbital TES spectroscopy. Outcrops of aqueous origin are composed of 15 to 35% by volume magnesium and calcium sulfates [a high-silica component modeled as a combination of glass, feldspar, and sheet silicates (∼20 to 30%)], and hematite; only minor jarosite is identified in Mini-TES spectra. Mini-TES spectra show only a hematite signature in the millimeter-sized spherules. Basaltic materials have more plagioclase than pyroxene, contain olivine, and are similar in inferred mineral composition to basalt mapped from orbit. Bounce rock is dominated by clinopyroxene and is close in inferred mineral composition to the basaltic martian meteorites. Bright wind streak material matches global dust. Waterlain rocks covered by unaltered basaltic sands suggest a change from an aqueous environment to one dominated by physical weathering.


Journal of Geophysical Research | 2000

A thermal emission spectral library of rock-forming minerals

Philip R. Christensen; Joshua L. Bandfield; Victoria E. Hamilton; Douglas A. Howard; Melissa D. Lane; Jennifer Lynn Piatek; Steven W. Ruff; William L. Stefanov

A library of thermal infrared spectra of silicate, carbonate, sulfate, phosphate, halide, and oxide minerals has been prepared for comparison to spectra obtained from planetary and Earth-orbiting spacecraft, airborne instruments, and laboratory measurements. The emphasis in developing this library has been to obtain pure samples of specific minerals. All samples were hand processed and analyzed for composition and purity. The majority are 710 -1000 mm particle size fractions, chosen to minimize particle size effects. Spectral acquisition follows a method described previously, and emissivity is determined to within 2% in most cases. Each mineral spectrum is accompanied by descriptive information in database form including compositional information, sample quality, and a comments field to describe special circumstances and unique conditions. More than 150 samples were selected to include the common rock-forming minerals with an emphasis on igneous and sedimentary minerals. This library is available in digital form and will be expanded as new, well-characterized samples are acquired.


Science | 2008

Detection of Silica-Rich Deposits on Mars

Steven W. Squyres; Raymond E. Arvidson; Steven W. Ruff; R. Gellert; Richard V. Morris; D. W. Ming; Larry S. Crumpler; Jack D. Farmer; D. J. Des Marais; Albert S. Yen; Scott M. McLennan; Wendy M. Calvin; James F. Bell; Benton C. Clark; Aihui H. Wang; Timothy J. McCoy; Mariek E. Schmidt; P. A. de Souza

Mineral deposits on the martian surface can elucidate ancient environmental conditions on the planet. Opaline silica deposits (as much as 91 weight percent SiO2) have been found in association with volcanic materials by the Mars rover Spirit. The deposits are present both as light-toned soils and as bedrock. We interpret these materials to have formed under hydrothermal conditions and therefore to be strong indicators of a former aqueous environment. This discovery is important for understanding the past habitability of Mars because hydrothermal environments on Earth support thriving microbial ecosystems.


Science | 2010

Identification of carbonate-rich outcrops on Mars by the Spirit rover.

Richard V. Morris; Steven W. Ruff; Ralf Gellert; Douglas W. Ming; Raymond E. Arvidson; Benton C. Clark; D. C. Golden; K. L. Siebach; G. Klingelhöfer; Christian Schröder; Iris Fleischer; Albert S. Yen; Steven W. Squyres

Ancient Carbonate Minerals on Mars The historical presence of liquid water on Mars together with a CO 2-rich atmosphere should have resulted in the accumulation of large deposits of carbonate minerals. Yet, evidence for the presence of carbonates on the surface of Mars has been scarce. Using data collected by the Mars Exploration Rover, Spirit, Morris et al. (p. 421, published online 3 June; see the Perspective by Harvey) now present evidence for carbonate-rich outcrops in the Comanche outcrops within the Gusev crater. The carbonate is a major outcrop component and may have formed in the Noachian era (∼4 billion years ago) by precipitation from hydrothermal solutions that passed through buried carbonate deposits. Thus, it is likely that extensive aqueous activity under neutral pH conditions did occur on Mars. Substantial carbonate concentration in martian outcrops implies extensive aqueous activity in the past. Decades of speculation about a warmer, wetter Mars climate in the planet’s first billion years postulate a denser CO2-rich atmosphere than at present. Such an atmosphere should have led to the formation of outcrops rich in carbonate minerals, for which evidence has been sparse. Using the Mars Exploration Rover Spirit, we have now identified outcrops rich in magnesium-iron carbonate (16 to 34 weight percent) in the Columbia Hills of Gusev crater. Its composition approximates the average composition of the carbonate globules in martian meteorite ALH 84001. The Gusev carbonate probably precipitated from carbonate-bearing solutions under hydrothermal conditions at near-neutral pH in association with volcanic activity during the Noachian era.


Journal of Geophysical Research | 2006

Characterization and petrologic interpretation of olivine‐rich basalts at Gusev Crater, Mars

Y. McSween; Michael Bruce Wyatt; Ralf Gellert; James F. Bell; Richard V. Morris; K. E. Herkenhoff; Larry S. Crumpler; Keith A. Milam; Karen R. Stockstill; Livio L. Tornabene; Raymond E. Arvidson; Paul Bartlett; Diana L. Blaney; Nathalie A. Cabrol; Philip R. Christensen; B. C. Clark; Joy A. Crisp; D. J. Des Marais; T. Economou; Jack D. Farmer; William H. Farrand; Anupam Ghosh; M. P. Golombek; S. Gorevan; Ronald Greeley; Victoria E. Hamilton; James Richard Johnson; B. L. Joliff; G. Klingelhöfer; Amy T. Knudson

Additional co-authors: PR Christensen, BC Clark, JA Crisp, DJ DesMarais, T Economou, JD Farmer, W Farrand, A Ghosh, M Golombek, S Gorevan, R Greeley, VE Hamilton, JR Johnson, BL Joliff, G Klingelhofer, AT Knudson, S McLennan, D Ming, JE Moersch, R Rieder, SW Ruff, PA de Souza Jr, SW Squyres, H Wnke, A Wang, A Yen, J Zipfel


Journal of Geophysical Research | 1997

Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration

Steven W. Ruff; Philip R. Christensen; P. W. Barbera; Donald L. Anderson

Previous descriptions of thermal emission spectroscopy have presented techniques that vary in accuracy and reproducibility. Contributions of thermal energy from the instrument and environment are major calibration factors that limit accuracy in emissivity determination. Reproducibility is related to the stability of these quantities. Sample temperature determination is also a significant factor in arriving at accurate emissivity. All of the factors which impact the measurement of emissivity using an interferometric spectrometer with an uncooled detector are isolated and examined here. An experimental apparatus is presented along with a description of a simplified measurement and calibration scheme used to arrive at quantitative emissivity of minerals. A detailed error analysis examines the effect of errors in each of the calibration parameters in isolation and as part of multiple error propagation. Sample temperature determination from radiance can create emissivity error, but 95% of published minerals have an emissivity maximum of 0.98 or higher, resulting in emissivity error of 2% or less. With worst-case systematic and random errors included, emissivity can be determined with an uncertainty of ∼4%. In most cases it is less than 2%. Reproducibility with this technique is better than 1%.


Nature | 2005

Evidence for magmatic evolution and diversity on Mars from infrared observations

P. R. Christensen; Harry Y. McSween; Joshua L. Bandfield; Steven W. Ruff; A. D. Rogers; Victoria E. Hamilton; Noel Gorelick; Michael Bruce Wyatt; Bruce M. Jakosky; Hugh H. Kieffer; M. C. Malin; Jeffrey Edward Moersch

Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.


Science | 2012

Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; F. Calef; B. C. Clark; Barbara A. Cohen; L.A. Crumpler; P. A. de Souza; William H. Farrand; Ralf Gellert; J. A. Grant; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; G. Paulsen; Melissa S. Rice; Steven W. Ruff; Christian Schröder; Albert S. Yen; K. Zacny

Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

Collaboration


Dive into the Steven W. Ruff's collaboration.

Top Co-Authors

Avatar

Raymond E. Arvidson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge