Stijn Vandenberghe
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stijn Vandenberghe.
Annals of Biomedical Engineering | 2013
Adrian Zurbuchen; Aloïs Pfenniger; Andreas Stahel; Christian T. Stoeck; Stijn Vandenberghe; Volker M. Koch; Rolf Vogel
Energy-harvesting devices attract wide interest as power supplies of today’s medical implants. Their long lifetime will spare patients from repeated surgical interventions. They also offer the opportunity to further miniaturize existing implants such as pacemakers, defibrillators or recorders of bio signals. A mass imbalance oscillation generator, which consists of a clockwork from a commercially available automatic wrist watch, was used as energy harvesting device to convert the kinetic energy from the cardiac wall motion to electrical energy. An MRI-based motion analysis of the left ventricle revealed basal regions to be energetically most favorable for the rotating unbalance of our harvester. A mathematical model was developed as a tool for optimizing the device’s configuration. The model was validated by an in vitro experiment where an arm robot accelerated the harvesting device by reproducing the cardiac motion. Furthermore, in an in vivo experiment, the device was affixed onto a sheep heart for 1xa0h. The generated power in both experiments—in vitro (30xa0μW) and in vivo (16.7xa0μW)—is sufficient to power modern pacemakers.
The Journal of Thoracic and Cardiovascular Surgery | 2012
Tohid Pirbodaghi; Shannon Axiak; Alberto Weber; Thomas Gempp; Stijn Vandenberghe
OBJECTIVEnMechanical support of a failing heart is typically performed with rotary blood pumps running at constant speed, which results in a limited control on cardiac workload and nonpulsatile hemodynamics. A potential solution to overcome these limitations is to modulate the pump speed to create pulses. This study aims at developing a pulsatile control algorithm for rotary pumps, while investigating its effect on left ventricle unloading and the hemodynamics.nnnMETHODSnThe CentriMag (Levitronix GmbH, Zürich, Switzerland) rotary blood pump was implanted in 5 sheep and cannulated from the ventricular apex to the descending aorta. A modified controller was connected to the pump yielding direct speed control via analog voltage. Pump speed modulation patterns, including sine, saw tooth, triangle, and square waveforms with 2 different phase shifts, were synchronized with heartbeat. Various hemodynamic parameters, such as left ventricular pressure and volume, coronary flow, and arterial pressure, were analyzed to examine the influence of pump support.nnnRESULTSnThe pump speed modulation significantly affected left ventricular pressure and volume and arterial pressure, whereas coronary flow was not influenced by pump support mode. Stroke work in the pulsatile modes varied from 69% to 91% of baseline value and from 74% to 96% of constant speed value. Consequently, cardiac workload can be adjusted to provide relaxation, which may lead to myocardial recovery.nnnCONCLUSIONSnA synchronized pulsing rotary blood pump offers a simple and powerful control modality for heart unloading. This technique provides pulsatile hemodynamics, which is more physiologic than continuous blood flow and may be useful for perfusion of the other organs.
European Journal of Cardio-Thoracic Surgery | 2013
Tohid Pirbodaghi; Alberto Weber; Shannon Axiak; Thierry Carrel; Stijn Vandenberghe
OBJECTIVESnRotary blood pumps (RBPs) running at a constant speed are routinely used for the mechanical support of the heart in various clinical applications, from short-term use in heart-lung machines to long-term support of a failing heart. Their operating range is delineated by suction and regurgitation events, leaving limited control on the cardiac workload. This study investigates whether different ratios of systolic/diastolic support are advantageous over a constant-speed operation.nnnMETHODSnIn order to effectively control the load on the heart, this study aimed at developing a pulsatile control algorithm for rotary pumps to investigate the impact of pump speed modulation during systole and diastole on the left ventricle unloading. The CentriMag(TM) RBP with a modified controller was implanted in four sheep via a left thoracotomy and cannulated from the ventricular apex to the descending aorta. To modulate the pump speed synchronized with the heartbeat, custom-made real-time software detected the QRS complex of the electrocardiogram and controlled the pump speed during systole and diastole. Four different speed modulations with the same average speed but different systolic and diastolic speeds were compared with the baseline and the constant speed support. Left ventricular (LV) pressure and volume, coronary flow and pump flow were analysed to examine the influence of the pump speed modulation.nnnRESULTSnPulsatile setting reduces the cardiac workload to 64% of the baseline and 72% of the constant speed value. Maximum unloading is obtained with the highest speed during diastole and high-pulse amplitude. End-diastolic volume in the pulsatile modes varied from 85 to 94% of the baseline and 96 to 107% of the constant speed value. Consequently, the mechanical load on the heart can be adjusted to provide assuagement, which may lead to myocardial recovery. The higher pump speed during systole results in an increase in the pulse pressure up to 140% compared with the constant speed.nnnCONCLUSIONSnThe present study is an initial step to more accurate speed modulation of RBPs to optimize the cardiac load control. To develop future control algorithms, the concept of high speed during diastole having a maximal unloading effect on the LV and high speed during systole increasing the pulse pressure is worth considering.
IEEE Transactions on Biomedical Engineering | 2013
Gregor Ochsner; Raffael Amacher; Alois Amstutz; André Plass; M. Schmid Daners; Hendrik T. Tevaearai; Stijn Vandenberghe; Markus J. Wilhelm; Lino Guzzella
This paper presents a novel mock circulation for the evaluation of ventricular assist devices (VADs), which is based on a hardware-in-the-loop concept. A numerical model of the human blood circulation runs in real time and computes instantaneous pressure, volume, and flow rate values. The VAD to be tested is connected to a numerical-hydraulic interface, which allows the interaction between the VAD and the numerical model of the circulation. The numerical-hydraulic interface consists of two pressure-controlled reservoirs, which apply the computed pressure values from the model to the VAD, and a flow probe to feed the resulting VAD flow rate back to the model. Experimental results are provided to show the proper interaction between a numerical model of the circulation and a mixed-flow blood pump.
Artificial Organs | 2014
Gregor Ochsner; Raffael Amacher; Markus J. Wilhelm; Stijn Vandenberghe; Hendrik T. Tevaearai; André Plass; Alois Amstutz; Volkmar Falk; Marianne Schmid Daners
The current article presents a novel physiological control algorithm for ventricular assist devices (VADs), which is inspired by the preload recruitable stroke work. This controller adapts the hydraulic power output of the VAD to the end-diastolic volume of the left ventricle. We tested this controller on a hybrid mock circulation where the left ventricular volume (LVV) is known, i.e., the problem of measuring the LVV is not addressed in the current article. Experiments were conducted to compare the response of the controller with the physiological and with the pathological circulation, with and without VAD support. A sensitivity analysis was performed to analyze the influence of the controller parameters and the influence of the quality of the LVV signal on the performance of the control algorithm. The results show that the controller induces a response similar to the physiological circulation and effectively prevents over- and underpumping, i.e., ventricular suction and backflow from the aorta to the left ventricle, respectively. The same results are obtained in the case of a disturbed LVV signal. The results presented in the current article motivate the development of a robust, long-term stable sensor to measure the LVV.
Artificial Organs | 2011
Carl A. Johnson; Stijn Vandenberghe; Amanda R. Daly; Joshua R. Woolley; Shaun T. Snyder; Josiah E. Verkaik; Sang-Ho Ye; Harvey S. Borovetz; James F. Antaki; Peter D. Wearden; Marina V. Kameneva; William R. Wagner
The PediaFlow pediatric ventricular assist device is a miniature magnetically levitated mixed flow pump under development for circulatory support of newborns and infants (3-15 kg) with a targeted flow range of 0.3-1.5 L/min. The first generation design of the PediaFlow (PF1) was manufactured with a weight of approximately 100 g, priming volume less than 2 mL, length of 51 mm, outer diameter of 28 mm, and with 5-mm blood ports. PF1 was evaluated in an in vitro flow loop for 6 h and implanted in ovines for three chronic experiments of 6, 17, and 10 days. In the in vitro test, normalized index of hemolysis was 0.0087 ± 0.0024 g/100L. Hemodynamic performance and blood biocompatibility of PF1 were characterized in vivo by measurements of plasma free hemoglobin, plasma fibrinogen, total plasma protein, and with novel flow cytometric assays to quantify circulating activated ovine platelets. The mean plasma free hemoglobin values for the three chronic studies were 4.6 ± 2.7, 13.3 ± 7.9, and 8.8 ± 3.3 mg/dL, respectively. Platelet activation was low for portions of several studies but consistently rose along with observed animal and pump complications. The PF1 prototype generated promising results in terms of low hemolysis and platelet activation in the absence of complications. Hemodynamic results validated the magnetic bearing design and provided the platform for design iterations to meet the objective of providing circulatory support for young children with exceptional biocompatibility.
The Journal of Thoracic and Cardiovascular Surgery | 2013
Raffael Amacher; Alberto Weber; Henriette Brinks; Shannon Axiak; Antonio Luiz S. Ferreira; Lino Guzzella; Thierry Carrel; James F. Antaki; Stijn Vandenberghe
OBJECTIVEnCurrent pulsatile ventricular assist devices operate asynchronous with the left ventricle in fixed-rate or fill-to-empty modes because electrocardiogram-triggered modes have been abandoned. We hypothesize that varying the ejection delay in the synchronized mode yields more precise control of hemodynamics and left ventricular loading. This allows for a refined management that may be clinically beneficial.nnnMETHODSnEight sheep received a Thoratec paracorporeal ventricular assist device (Thoratec Corp, Pleasanton, Calif) via ventriculo-aortic cannulation. Left ventricular pressure and volume, aortic pressure, pulmonary flow, pump chamber pressure, and pump inflow and outflow were recorded. The pump was driven by a clinical pneumatic drive unit (Medos Medizintechnik AG, Stolberg, Germany) synchronously with the native R-wave. The start of pump ejection was delayed between 0% and 100% of the cardiac period in 10% increments. For each of these delays, hemodynamic variables were compared with baseline data using paired t tests.nnnRESULTSnThe location of the minimum of stroke work was observed at a delay of 10% (soon after aortic valve opening), resulting in a median of 43% reduction in stroke work compared with baseline. Maximum stroke work occurred at a median delay of 70% with a median stroke work increase of 11% above baseline. Left ventricular volume unloading expressed by end-diastolic volume was most pronounced for copulsation (delay 0%).nnnCONCLUSIONSnThe timing of pump ejection in synchronized mode yields control over left ventricular energetics and can be a method to achieve gradual reloading of a recoverable left ventricle. The traditionally suggested counterpulsation is not optimal in ventriculo-aortic cannulation when maximum unloading is desired.
Artificial Organs | 2011
Tohid Pirbodaghi; Alberto Weber; Thierry Carrel; Stijn Vandenberghe
In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.
IEEE Transactions on Biomedical Engineering | 2013
Raffael Amacher; Gregor Ochsner; Antonio Ferreira; Stijn Vandenberghe; Marianne Schmid Daners
Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the hearts action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.
Artificial Organs | 2009
Onur Dur; Mikhail Lara; Dorian K Arnold; Stijn Vandenberghe; Bradley B. Keller; Curt G. DeGroff; Kerem Pekkan
The characteristic depressed hemodynamic state and gradually declining circulatory function in Fontan patients necessitates alternative postoperative management strategies incorporating a system level approach. In this study, the single-ventricle Fontan circulation is modeled by constructing a practical in vitro bench-top pulsatile pediatric flow loop which demonstrates the ability to simulate a wide range of clinical scenarios. The aim of this study is to illustrate the utility of a novel single-ventricle flow loop to study mechanical cardiac assist to Fontan circulation to aid postoperative management and clinical decision-making of single ventricle patients. Two different pediatric ventricular assist devices, Medos and Pediaflow Gen-0, are anastomosed in two nontraditional configurations: systemic venous booster (SVB) and pulmonary arterial booster (PAB). Optimum ventricle assist device strategy is analyzed under normal and pathological (pulmonary hypertension) conditions. Our findings indicate that the Medos ventricular assist device in SVB configuration provided the highest increase in pulmonary (46%) and systemic (90%) venous flow under normal conditions, whereas for the hypertensive condition, highest pulmonary (28%) and systemic (55%) venous flow augmentation were observed for the Pediaflow ventricular assist device inserted as a PAB. We conclude that mechanical cardiac assist in the Fontan circulation effectively results in flow augmentation and introduces various control modalities that can facilitate patient management. Assisted circulation therapies targeting single-ventricle circuits should consider disease state specific physiology and hemodynamics on the optimal configuration decisions.