Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stina Hemdal is active.

Publication


Featured researches published by Stina Hemdal.


International Journal of Engine Research | 2011

In-cylinder soot imaging and emissions of stratified combustion in a spark-ignited spray-guided direct-injection gasoline engine

Stina Hemdal; Mats R. Andersson; Petter Dahlander; Raul Lima Ochoterena; Ingemar Denbratt

The combustion in a spark-ignited spray-guided gasoline direct-injection engine operating in a stratified mode has been studied by in-cylinder imaging of the fuel, OH*, and soot distributions. Information on the fuel distribution was obtained by laser-induced fluorescence imaging of the aromatic molecules in the gasoline. The OH* and soot distributions were simultaneously visualized by detection of the natural emissions at 306 nm (OH*) and around 530 nm (soot) using two intensified charge-coupled device cameras. In addition to the in-cylinder observations, engine-out soot emissions, NOx, and HC were measured. The engine was operated at a speed of 2000 r/min and an indicated mean effective pressure of 2.5 bar, with a fully open throttle, resulting in a globally lean combustion with a fuel–air equivalence ratio of about 0.25. The gasoline was injected in single or double injections by an outward-opening piezo-actuated injector. The combustion was ignited efficiently at locally fuel-rich conditions. The soot formation and oxidation were investigated for the two injection strategies, each with three injection timings and two fixed ignition timings. The results showed that soot was efficiently formed and oxidized. From the in-cylinder measurements, it could be seen that the soot luminescence intensity quickly rose and then declined, while the combustion temperature was still increasing. Furthermore, the OH* intensity was still increasing as the soot luminescence was declining. The soot incandescence peak intensity occurred at a crank angle degree close to 50 per cent mass burned, and the OH* intensity peak arose later, shortly before the maximum soot temperature around top dead centre (TDC). When the injection timing was retarded, with constant ignition timing with respect to injection, it was found that the total soot luminosity increased. In addition, less OH* chemiluminescence was observed during the decrease of the soot incandescence, implying conditions less favourable for efficient soot oxidation in the later part of the combustion for retarded injections. This was confirmed by the engine-out soot emission measurements, which showed increased soot levels as the injection was retarded. It was also found that fuel impinged on the spark plug during the injections, resulting in a persistent jet flame close to the spark plug in the centre of the cylinder, which is believed to contribute to engine-out soot emissions.


SAE International Journal of Fuels and Lubricants | 2009

Stratified cold start sprays of gasoline-ethanol blends

Stina Hemdal; Ingemar Denbratt; Petter Dahlander; Jonas Wärnberg

Gasoline and gasoline-ethanol sprays from an outward-opening piezo-injector were studied in a constant volume/pressure chamber using high-speed imaging and phase doppler anemometry (PDA) under stratified cold start conditions corresponding to a vehicle ambient temperature of 243 K (-30 °C/-22 °F); in-cylinder air pressure of 5 bar, air temperature of 350 K (-30 °C/-22 °F) and fuel temperature of 243 K. The effects of varying in-cylinder pressure and temperature, fuel injection pressure and fuel temperature on the formation of gasoline, E75 and pure ethanol sprays were investigated. The results indicate that fuel composition affects spray behaviour, but less than expected. Furthermore, varying the temperature of the fuel or the air surrounding the spray also had minor effects. As expected, the fuel injection pressure was found to have the strongest influence on spray formation under stratified conditions.


11th International Conference on Engines & Vehicles | 2013

Experimental Investigation of Soot in a Spray-Guided Single Cylinder GDI Engine Operating in a Stratified Mode

Anders Johansson; Stina Hemdal; Petter Dahlander

Forthcoming reductions in legal limits for emissions of particle matter (PM) from direct injection engines have increased the need for understanding particle distributions in the engines and the factors affecting them. Therefore, in the presented study the influence on PM-emissions of potentially important factors (fuel injection pressure, load, speed and 50% mass fraction burned phasing) on particle mass, number and size distributions were experimentally investigated. The experimental system was a spray-guided, direct injection, single-cylinder research engine operated in stratified charge mode (using gasoline with 10% ethanol as fuel), under five load and speed settings that are appropriate for stratified combustion. The particle distributions obtained from operating the engine in homogeneous combustion and stratified combustion modes were also compared. The particle distributions were measured using a Cambustion DMS500 fast particle analyzer in combination with a Dekati FPS4000 fine particle sampler and a thermodenuder in all tests except the comparison of distributions under stratified and homogeneous combustion conditions. The sampling system was designed to remove as much of the volatile unburned hydrocarbons as possible in order to sample mostly solid particles. Under all of the stratified operating conditions studied, the results indicate that the particle distribution has a characteristic shape with a tail and one large peak. The operating speed significantly affected the size of the largest particles and the quantity of the particles represented by the tail. An almost linear, positive relationship was found between the load and particle number. Increasing the fuel injection pressure reduced particle numbers whereas combustion phasing had no significant observed effects. More particles were generated in stratified combustion mode than in homogeneous mode.


Combustion Science and Technology | 2016

Application of Flame Speed Closure Model to RANS Simulations of Stratified Turbulent Combustion in a Gasoline Direct-Injection Spark-Ignition Engine

Chen Huang; Ehsan Yasari; Lars Christian Riis Johansen; Stina Hemdal; Andrei Lipatnikov

ABSTRACT The present work aims at development and validation of a tool for numerically modeling stratified turbulent combustion in a gasoline direct injection (GDI) engine. For this purpose, an open source code called OpenFOAM®, which has been attracting growing interests from both industries and academies due to an opportunity to access the source code and to test new models without paying license fees, is further developed by implementing advanced models relevant to stratified turbulent burning. In particular, first, the Flame Speed Closure model of premixed turbulent combustion is implemented in order to simulate flame propagation through inhomogeneously premixed reactants. Second, a newly calculated approximation of the laminar flame speed of gasoline-air mixtures as a function of the equivalence ratio, pressure, and temperature is implemented in order to simulate dependence of burning rate on the local mixture composition. Third, a newly calculated approximation of the combustion temperature of gasoline-air mixtures as a function of the equivalence ratio, pressure, and product enthalpy is implemented in order to allow for dissociation of combustion products and heat losses. Fourth, a presumed mixture-fraction probability density function (PDF) approach is implemented in order to simulate the influence of turbulent fluctuations in the mixture fraction on the local burning rate. In addition to commonly used mass-weighted mixture-fraction PDF, a more consistent model that deals also with the canonical mixture-fraction PDF is developed and the two approaches are compared. Numerical results that show the influence of the aforementioned implementations on computed global characteristics of stratified combustion in a research GDI engine are discussed. The developed numerical tool is quantitatively validated by comparing computed pressure traces in the GDI engine with experimental data obtained in three different cases associated with two different loads, late injection timings, and short time intervals between the injection and spark ignition.


SAE Technical Papers: SAE 2015 World Congress and Exhibition; Cobo CenterDetroit; United States; 21 April 2015 through 23 April 2015 | 2015

High-Speed Photography of Stratified Combustion in an Optical GDI Engine for Different Triple Injection Strategies

Petter Dahlander; Stina Hemdal

To contribute to knowledge required to meet new emission requirements, relationships between multiple injection parameters, degrees of fuel stratification, combustion events, work output and flame luminosity (indicative of particulate abundance) were experimentally investigated using a single-cylinder optical GDI engine. A tested hypothesis was that advancing portions of the mass injected would enhance the fuel-air mixing and thus reduce flame luminescence. An outward-opening piezo actuated fuel injector capable of multiple injections was used to inject the fuel using different triple injection strategies, with various combinations of late and earlier injections leading to various degrees of fuel stratification. Sprays and combustion events were captured using two high-speed cameras and cylinder pressure measurements. The data were analyzed to assess effects of fuel stratification on yellow flame luminescence(assumed to be dominated by soot luminescence), flame propagation, jet flames, pool fires and heat release. The combustion phasing, amount of fuel injected and engine speed were kept constant and the engine was unthrottled for all tested cases. Image sectorization was used to analyze events captured in different parts of the cylinder. The results show that the injection strategy influences fuel spray behavior and the combustion in terms of both flame luminescence patterns and work output. Injecting some of the fuel earlier results in increased spray liquid penetration, streakier sprays (due to the lower backpressure), and less intense yellow flame luminescence, but also reductions in work output. The greater portions of fuel injected close to the ignition results in increased soot luminescence.


SAE Technical Papers: SAE 2015 World Congress and Exhibition; Cobo CenterDetroit; United States; 21 April 2015 through 23 April 2015 | 2015

Reduction of Fuel Consumption and Engine-out NO x Emissions in a Lean Homogeneous GDI Combustion System, Utilizing Valve Timing and an Advanced Ignition System

Gerben Doornbos; Stina Hemdal; Daniel Dahl

This study investigated how the amount of dilution applied can be extended while maintaining normal engine operation in a GDI engine. Adding exhaust gases or air to a stoichiometric air/fuel mixture yields several advantages regarding fuel consumption and engine out emissions. The aim of this paper is to reduce fuel consumption by means of diluted combustion, an advanced ignition system and adjusted valve timing. Tests were performed on a Volvo four-cylinder engine equipped with a dual coil ignition system. This system made it possible to extend the ignition duration and current. Furthermore, a sweep was performed in valve timing and type of dilution, i.e., air or exhaust gases. While maintaining a CoV in IMEP < 5%, the DCI system was able to extend the maximum lambda value by 0.1 - 0.15. Minimizing valve overlap increased lambda by an additional 0.1. For dilution by exhaust gases, an increase of 9% was noted for the ignition system and a further increase of 9% was obtained by minimizing the valve overlap at 1500 rpm/5.00 bar BMEP. This exchange of internal combustion residuals for external dilution resulted in a further decrease of fuel consumption but increased engine out NO x . Using air as a diluter resulted in a 6% fuel consumption benefit over exhaust gas dilution, mainly due to the enhanced combustion efficiency arising from higher oxygen concentrations. However, the lower oxygen concentration when using exhaust gases as a diluter led to 50% lower engine out NO x levels at the dilution limit.


SAE 2014 International Powertrain, Fuels & Lubricants Meeting | 2014

A Study of Two Basic Issues Relevant to RANS Simulations of Stratified Turbulent Combustion in a Spray-Guided Direct-Injection Spark-Ignition Engine

Chen Huang; Andrei Lipatnikov; Lars Christian Riis Johansen; Stina Hemdal

A Spray-Guided (SG) Direct-Injection (DI) Spark-Ignition (SI) engine is widely recognized to be a promising technology capable for substantially reducing fuel consumption and carbon dioxide emissions. Accordingly, there is a strong need for developing models of some effects specific to stratified turbulent burning under conditions of elevated and rapidly varying pressure. Two such effects were addressed in the present work by performing unsteady three-dimensional URANS simulations of stratified turbulent combustion in a SG DISI engine. First, a simple method of evaluation equilibrium combustion temperature, implemented into the CFD code OpenFOAM ® , was improved in order to take into account the dissociation of the combustion products. Second, stratified turbulent combustion is affected by fluctuations in mixture composition. A widely used approach to modeling this effect consists of invoking a presumed Probability Density Function (PDF) for mixture fraction f . Because parameters of this PDF are determined using the first and second Favre moments of the mixture fraction field, the PDF is density-weighted. However, the canonical PDF P f is required to average certain important combustion characteristics that are straightforwardly relevant to local burning rate e.g. the laminar flame speed or the product density. In the present work, the relation between the Favre and canonical PDFs was investigated under conditions associated with burning in a SG DISI engine. Finally, the stratified turbulent combustion model which invo


SAE International Powertrains, Fuels and Lubricants Meeting | 2011

Evaporation of Gasoline-Like and Ethanol-Based Fuels in Hollow-Cone Sprays Investigated by Planar Laser-Induced Fluorescence and Mie Scattering

Mats R. Andersson; Jonas Wärnberg; Stina Hemdal; Petter Dahlander; Ingemar Denbratt

The evaporation of different fuels and fuel components in hollow-cone sprays at conditions similar to those at stratified cold start has been investigated using a combination of planar laser-induced fluorescence (LIF) and Mie scattering. Ketones of different volatility were used as fluorescent tracers for different fuel components in gasoline-like model fuels and ethanol-based fuels. LIF and Mie images were compared to evaluate to what extent various fuel components had evaporated and obtained a spatial distribution different from that of the liquid drops, as a function of fuel temperature and time after start of injection. A selective and sequential evaporation of fuel components of different volatility was found.


SAE International journal of engines | 2017

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

Anders Johansson; Stina Hemdal; Petter Dahlander

The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence. The results indicated that increasing the fuel injection pressure led to faster burn as well as a reduction in soot luminescence. The ionizing ignition system generated faster initial combustion. Increasing the tumble level reduced the soot luminescence at all injection pressures, but the influence was largest at the lowest fuel injection pressure. The combination of an ionizing ignition system and high fuel pressure was most beneficial for lowering soot luminescence.


SAE 2016 World Congress and Exhibition | 2016

Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.

Gerben Doornbos; Stina Hemdal; Daniel Dahl; Ingemar Denbratt

Passive selective catalyst reduction (SCR) systems can be used as aftertreatment systems for lean burn spark ignition (SI)-engines. Their operation is based on the interaction between the engine, an ammonia formation catalyst (AFC), and an SCR catalyst. Under rich conditions the AFC forms ammonia, which is stored in the SCR catalyst. Under lean conditions, the SCR catalyst reduces the engine out NOx using the stored NH3. This study compared the ammonia production and response times of a standard three way catalyst (TWC) and a Pd/Al2O3 catalyst under realistic engine operating conditions. In addition, the relationships between selected engine operating parameters and ammonia formation over a TWC were investigated, considering the influence of both the chosen load point and the engine settings. Tests at the loadpoint of 1500 rpm/2.63 bar break mean effective pressure (BMEP) showed that most ammonia was formed over a TWC at a lambda of 0.93 with a 50% mass fraction burned (MFB) at 3 crank angle degrees (CAD) after top dead centre (aTDC), when valve overlap was minimised. The response time of the TWC during transitions from rich to lean operation was evaluated at various loadpoints, showing that the TWC responded most rapidly at higher loadpoints, mainly due to the higher flow through the catalyst. Furthermore it was noted that at 1750 rpm/8.00 bar BMEP, ammonia formation decreased over time due to high in-catalyst temperatures. A comparison between the TWC and Pd/Al2O3 catalyst showed that the latter produced ammonia faster than the TWC catalyst at 1500 rpm/2.63 bar BMEP. Furthermore the yield was more than 50% lower compared to the TWC.

Collaboration


Dive into the Stina Hemdal's collaboration.

Top Co-Authors

Avatar

Ingemar Denbratt

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Petter Dahlander

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrei Lipatnikov

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Chen Huang

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Johansson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel Dahl

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Gerben Doornbos

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge