Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stine Ringholm is active.

Publication


Featured researches published by Stine Ringholm.


American Journal of Physiology-endocrinology and Metabolism | 2011

Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle.

Stine Ringholm; Rasmus S. Biensø; Kristian Kiilerich; Amelia Guadalupe-Grau; Niels Jacob Aachmann-Andersen; Bengt Saltin; Peter Plomgaard; Carsten Lundby; Jørgen F. P. Wojtaszewski; Jose A. L. Calbet; Henriette Pilegaard

The aim was to test the hypothesis that 7 days of bed rest reduces mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after bed rest. Twelve young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from six of the subjects prior to, immediately after, and 3 h after 45 min of one-legged knee extensor exercise performed before and after bed rest. Maximal oxygen uptake decreased by 4%, and exercise endurance decreased nonsignificantly, by 11%, by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ∼45%, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity ∼8%, and miR-1 and miR-133a content ∼10%. However, cytochrome c and vascular endothelial growth factor (VEGF) protein content as well as capillarization did not change significantly with bed rest. Acute exercise increased AMP-activated protein kinase phosphorylation, peroxisome proliferator activated receptor-γ coactivator-1α, and VEGF mRNA content in skeletal muscle before bed rest, but the responses were abolished after bed rest. The present findings indicate that only 7 days of physical inactivity reduces skeletal muscle metabolic capacity as well as abolishes exercise-induced adaptive gene responses, likely reflecting an interference with the ability of skeletal muscle to adapt to exercise.


Diabetes | 2012

GLUT4 and Glycogen Synthase Are Key Players in Bed Rest–Induced Insulin Resistance

Rasmus S. Biensø; Stine Ringholm; Kristian Kiilerich; Niels-Jacob Aachmann-Andersen; Rikke Krogh-Madsen; Borja Guerra; Peter Plomgaard; Gerrit van Hall; Jonas T. Treebak; Bengt Saltin; Carsten Lundby; Jose A. L. Calbet; Henriette Pilegaard; Jørgen F. P. Wojtaszewski

To elucidate the molecular mechanisms behind physical inactivity–induced insulin resistance in skeletal muscle, 12 young, healthy male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies obtained before and after. In six of the subjects, muscle biopsies were taken from both legs before and after a 3-h hyperinsulinemic euglycemic clamp performed 3 h after a 45-min, one-legged exercise. Blood samples were obtained from one femoral artery and both femoral veins before and during the clamp. Glucose infusion rate and leg glucose extraction during the clamp were lower after than before bed rest. This bed rest–induced insulin resistance occurred together with reduced muscle GLUT4, hexokinase II, protein kinase B/Akt1, and Akt2 protein level, and a tendency for reduced 3-hydroxyacyl-CoA dehydrogenase activity. The ability of insulin to phosphorylate Akt and activate glycogen synthase (GS) was reduced with normal GS site 3 but abnormal GS site 2+2a phosphorylation after bed rest. Exercise enhanced insulin-stimulated leg glucose extraction both before and after bed rest, which was accompanied by higher GS activity in the prior-exercised leg than the rested leg. The present findings demonstrate that physical inactivity–induced insulin resistance in muscle is associated with lower content/activity of key proteins in glucose transport/phosphorylation and storage.


PLOS ONE | 2011

Sucrose Counteracts the Anti-Inflammatory Effect of Fish Oil in Adipose Tissue and Increases Obesity Development in Mice

Tao Ma; Bjørn Liaset; Qin Hao; Rasmus Koefoed Petersen; Even Fjære; Ha Thi Ngo; Haldis Haukås Lillefosse; Stine Ringholm; Si Brask Sonne; Jonas T. Treebak; Henriette Pilegaard; Livar Frøyland; Karsten Kristiansen; Lise Madsen

Background Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance. Methodology/Principal Findings We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state. Conclusions/Significance The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.


The Journal of Physiology | 2013

AMP‐activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle

Josef Brandauer; Marianne A. Andersen; Stine Ringholm; Steve Risis; Per Larsen; Jonas M. Kristensen; Christian Frøsig; Lotte Leick; Joachim Fentz; Sebastian B. Jørgensen; Bente Kiens; Jørgen F. P. Wojtaszewski; Erik A. Richter; Juleen R. Zierath; Laurie J. Goodyear; Henriette Pilegaard; Jonas T. Treebak

•  NAD is a substrate for sirtuins (SIRTs), which regulate gene transcription in response to specific metabolic stresses. •  Nicotinamide phosphoribosyl transferase (Nampt) is the rate‐limiting enzyme in the NAD salvage pathway. •  Using transgenic mouse models, we tested the hypothesis that skeletal muscle Nampt protein abundance would increase in response to metabolic stress in a manner dependent on the cellular nucleotide sensor, AMP‐activated protein kinase (AMPK). •  Exercise training, as well as repeated pharmacological activation of AMPK by 5‐amino‐1‐β‐d‐ribofuranosyl‐imidazole‐4‐carboxamide (AICAR), increased Nampt protein abundance. However, only the AICAR‐mediated increase in Nampt protein abundance was dependent on AMPK. •  Our results suggest that cellular energy charge and nutrient sensing by SIRTs may be mechanistically related, and that Nampt may play a key role for cellular adaptation to metabolic stress.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Role of PGC-1α in exercise and fasting-induced adaptations in mouse liver

Tobias Nørresø Haase; Stine Ringholm; Lotte Leick; Rasmus S. Biensø; Kristian Kiilerich; Sune Troels Johansen; Maja Nielsen; Jørgen F. P. Wojtaszewski; Juan Hidalgo; Per Amstrup Pedersen; Henriette Pilegaard

The transcriptional coactivator peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α plays a role in regulation of several metabolic pathways. By use of whole body PGC-1α knockout (KO) mice, we investigated the role of PGC-1α in fasting, acute exercise and exercise training-induced regulation of key proteins in gluconeogenesis and metabolism in the liver. In both wild-type (WT) and PGC-1α KO mice liver, the mRNA content of the gluconeogenic proteins glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) was upregulated during fasting. Pyruvate carboxylase (PC) remained unchanged after fasting in WT mice, but it was upregulated in PGC-1α KO mice. In response to a single exercise bout, G6Pase mRNA was upregulated in both genotypes, whereas no significant changes were detected in PEPCK or PC mRNA. While G6Pase and PC protein remained unchanged, liver PEPCK protein content was higher in trained than untrained mice of both genotypes. The mRNA content of the mitochondrial proteins cytochrome c (Cyt c) and cytochrome oxidase (COX) subunit I was unchanged in response to fasting. The mRNA and protein content of Cyt c and COXI increased in the liver in response to a single exercise bout and prolonged exercise training, respectively, in WT mice, but not in PGC-1α KO mice. Neither fasting nor exercise affected the mRNA expression of antioxidant enzymes in the liver, and knockout of PGC-1α had no effect. In conclusion, these results suggest that PGC-1α plays a pivotal role in regulation of Cyt c and COXI expression in the liver in response to a single exercise bout and prolonged exercise training, which implies that exercise training-induced improvements in oxidative capacity of the liver is regulated by PGC-1α.


Experimental Gerontology | 2013

Effect of lifelong resveratrol supplementation and exercise training on skeletal muscle oxidative capacity in aging mice; impact of PGC-1α

Stine Ringholm; Jesper Olesen; Jesper T. Pedersen; Christina T. Brandt; Jens Frey Halling; Ylva Hellsten; Clara Prats; Henriette Pilegaard

BACKGROUND The present study tested the hypothesis that lifelong resveratrol (RSV) supplementation counteracts an age-associated decrease in skeletal muscle oxidative capacity through peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α and that RSV combined with lifelong exercise training (EX) exerts additive effects through PGC-1α in mice. METHODS 3 month old PGC-1α whole body knockout (KO) and wild type (WT) littermate mice were placed in cages with or without running wheel and fed either standard chow or standard chow with RSV supplementation (4 g/kg food) for 12 months. Young (3 months of age), sedentary mice on standard chow served as young controls. A graded running performance test and a glucose tolerance test were performed 2 and 1 week, respectively, before euthanization where quadriceps and extensor digitorum longus (EDL) muscles were removed. RESULTS In PGC-1α KO mice, quadriceps citrate synthase (CS) activity, mitochondrial (mt)DNA content as well as pyruvate dehydrogenase (PDH)-E1α, cytochrome (Cyt) c and vascular endothelial growth factor (VEGF) protein content were 20-75% lower and, EDL capillary-to-fiber (C:F) ratio was 15-30% lower than in WT mice. RSV and/or EX had no effect on the C:F ratio in EDL. CS activity (P=0.063) and mtDNA content (P=0.013) decreased with age in WT mice, and CS activity, mtDNA content, PDH-E1α protein and VEGF protein increased ~1.5-1.8-fold with lifelong EX in WT, but not in PGC-1α KO mice, while RSV alone had no significant effect on these proteins. CONCLUSION Lifelong EX increased activity/content of oxidative proteins, mtDNA and angiogenic proteins in skeletal muscle through PGC-1α, while RSV supplementation alone had no effect. Combining lifelong EX and RSV supplementation had no additional effect on skeletal muscle oxidative and angiogenic proteins.


PLOS ONE | 2013

PGC-1α Is Required for Exercise- and Exercise Training-Induced UCP1 Up-Regulation in Mouse White Adipose Tissue

Stine Ringholm; Jakob G. Knudsen; Lotte Leick; Anders Lundgaard; Maja Nielsen; Henriette Pilegaard

Background The aim of the present study was to test the hypotheses that 1) a single exercise bout increases UCP1 mRNA in both inguinal (i)WAT and epididymal (e)WAT, 2) UCP1 expression and responsiveness to exercise are different in iWAT and eWAT, 3) PGC-1α determines the basal levels of UCP1 and PRDM16 in WAT and 4) exercise and exercise training regulate UCP1 and PRDM16 expression in WAT in a PGC-1α-dependent manner. Methods Whole body PGC-1α knockout (KO) and wildtype (WT) littermate mice performed a single treadmill exercise bout at 14 m/min and 10% slope for 1 hour. Mice were sacrificed and iWAT, eWAT and quadriceps muscle were removed immediately after, 2, 6 and 10 hours after running, and from sedentary mice that served as controls. In addition, PGC-1α KO mice and WT littermates were exercise trained for 5 weeks with sedentary mice as untrained controls. Thirty-six-37 hours after the last exercise bout iWAT was removed. Results UCP1 mRNA content increased 19-fold in iWAT and 7.5-fold in eWAT peaking at 6 h and 0′ of recovery, respectively, in WT but with no changes in PGC-1α KO mice. UCP1 protein was undetectable in eWAT and very low in iWAT of untrained mice but increased with exercise training to 4.4 (AU) in iWAT from WT mice without significant effects in PGC-1α KO mice. Conclusion The present observations provide evidence that exercise training increases UCP1 protein in iWAT through PGC-1α, likely as a cumulative effect of transient increases in UCP1 expression after each exercise bout. Moreover, the results suggest that iWAT is more responsive than eWAT in exercise-induced regulation of UCP1. In addition, as PRDM16 mRNA content decreased in recovery from acute exercise, the present findings suggest that acute exercise elicits regulation of several brown adipose tissue genes in mouse WAT.


Physiological Reports | 2016

PGC‐1α promotes exercise‐induced autophagy in mouse skeletal muscle

Jens Frey Halling; Stine Ringholm; Maja Nielsen; Peter Overby; Henriette Pilegaard

Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise‐induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal autophagy levels. Therefore, the aim of this study was to investigate the role of the key regulator of muscle oxidative capacity, PGC‐1α, in exercise‐induced autophagy at several time points during recovery. Mice with transgenic muscle‐specific overexpression (TG) or knockout (MKO) of PGC‐1α and their respective littermate controls were subjected to a single 1 h bout of treadmill running and euthanized immediately (0 h), 2, 6, and 10 h after exercise. In the PGC‐1α MKO strain, quadriceps protein content of the autophagy marker LC3II was increased from 2 h into recovery in lox/lox control, but not in MKO mice. In the PGC‐1α TG strain, quadriceps protein content of LC3II was increased from 2 h after exercise in TG, but not in WT. Although AMPK and ACC phosphorylation was increased immediately following exercise, the observed exercise‐induced autophagy response was not associated with phosphorylation of the AMPK‐target ULK1. However, lower protein carbonyl content was observed in lox/lox and TG mice after exercise coinciding with the increased LC3 lipidation. In conclusion, the present results suggest a role of skeletal muscle PGC‐1α in coordinating several exercise‐induced adaptive responses including autophagic removal of damaged cellular components.


Journal of Applied Physiology | 2011

Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest

Kristian Kiilerich; Stine Ringholm; Rasmus S. Biensø; James P. Fisher; Ninna Iversen; Gerrit van Hall; Jørgen F. P. Wojtaszewski; Bengt Saltin; Carsten Lundby; Jose A. L. Calbet; Henriette Pilegaard

To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), six healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an oral glucose tolerance test (OGTT) and a one-legged knee extensor exercise bout [45 min at 60% maximal load (W(max))] with muscle biopsies obtained from vastus lateralis before, immediately after exercise, and at 3 h of recovery. Blood samples were taken from the femoral vein and artery before and after 40 min of exercise. Glucose intake elicited a larger (P ≤ 0.05) insulin response after bed rest than before, indicating glucose intolerance. There were no differences in lactate release/uptake across the exercising muscle before and after bed rest, but glucose uptake after 40 min of exercise was larger (P ≤ 0.05) before bed rest than after. Muscle glycogen content tended to be higher (0.05< P ≤ 0.10) after bed rest than before, but muscle glycogen breakdown in response to exercise was similar before and after bed rest. PDH-E1α protein content did not change in response to bed rest or in response to the exercise intervention. Exercise increased (P ≤ 0.05) the activity of PDH in the active form (PDHa) and induced (P ≤ 0.05) dephosphorylation of PDH-E1α on Ser²⁹³, Ser²⁹⁵ and Ser³⁰⁰, with no difference before and after bed rest. In conclusion, although 7 days of bed rest induced whole body glucose intolerance, exercise-induced PDH regulation in skeletal muscle was not changed. This suggests that exercise-induced PDH regulation in skeletal muscle is maintained in glucose-intolerant (e.g., insulin resistant) individuals.


Experimental Gerontology | 2013

Role of PGC-1α in exercise training- and resveratrol-induced prevention of age-associated inflammation

Jesper Olesen; Stine Ringholm; Maja Nielsen; Christina T. Brandt; Jesper T. Pedersen; Jens Frey Halling; Laurie J. Goodyear; Henriette Pilegaard

BACKGROUND/AIM Age-related metabolic diseases are often associated with low-grade inflammation. The aim of the present study was to investigate the role of the transcriptional co-activator PGC-1α in the potential beneficial effects of exercise training and/or resveratrol in the prevention of age-associated low-grade inflammation. To address this, a long-term voluntary exercise training and resveratrol supplementation study was conducted. EXPERIMENTAL SETUP Three month old whole body PGC-1α KO and WT mice were randomly assigned to four groups: untrained chow-fed, untrained chow-fed supplemented with resveratrol, chow-fed voluntarily exercise trained and chow-fed supplemented with resveratrol and voluntarily exercise trained. The intervention lasted 12 months and three month old untrained chow-fed mice served as young controls. RESULTS Voluntary exercise training prevented an age-associated increase (p<0.05) in systemic IL-6 and adiposity in WT mice. PGC-1α expression was required for a training-induced prevention of an age-associated increase (p<0.05) in skeletal muscle TNFα protein. Independently of PGC-1α, both exercise training and resveratrol prevented an age-associated increase (p<0.05) in skeletal muscle protein carbonylation. CONCLUSION The present findings highlight that exercise training is a more effective intervention than resveratrol supplementation in reducing age-associated inflammation and that PGC-1α in part is required for the exercise training-induced anti-inflammatory effects.

Collaboration


Dive into the Stine Ringholm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose A. L. Calbet

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

Carsten Lundby

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge