Stoichko D. Dimitrov
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stoichko D. Dimitrov.
Nature Communications | 2016
Sarah Holliday; Raja Shahid Ashraf; Andrew Wadsworth; Derya Baran; Syeda Amber Yousaf; Christian B. Nielsen; Ching Hong Tan; Stoichko D. Dimitrov; Zhengrong Shang; Nicola Gasparini; Maha A. Alamoudi; Frédéric Laquai; Christoph J. Brabec; Alberto Salleo; James R. Durrant; Iain McCulloch
Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.
Energy and Environmental Science | 2014
Ravichandran Shivanna; Safa Shoaee; Stoichko D. Dimitrov; Sunil Kumar Kandappa; Sridhar Rajaram; James R. Durrant; K. S. Narayan
The origin of high current density in efficient non-fullerene based bulk heterojunction (BHJ) organic solar cells employing a non-planar perylene dimer (TP) as an electron acceptor and a thiophene based donor polymer PBDTTT-CT is investigated using electrical and optical techniques. Photoluminescence measurements reveal almost complete quenching of both the donor and acceptor excitons, indicating efficient electron and hole transfer processes. The nanomorphology of the films shows fine mixing of the donor polymer and TP at 50 : 50% weight ratio with a photon to current conversion efficiency (IPCE) of 45% in the visible regime. At the donor–acceptor interface, both polymer and TP excitons undergo fast dissociation with similar time scales of a few picoseconds. The magnitude of the polaron yield of PBDTTT-CT:TP blends is observed to be comparable to that of PBDTTT-CT:PC70BM blends and exhibits similar μs-decay dynamics. A power conversion efficiency of 3.2% is achieved for devices with 50 : 50% by weight compositional ratio of polymer and TP.
Journal of the American Chemical Society | 2012
Stoichko D. Dimitrov; Artem A. Bakulin; Christian B. Nielsen; Bob C. Schroeder; Junping Du; Hugo Bronstein; Iain McCulloch; Richard H. Friend; Durrant
The energetic driving force required to drive charge separation across donor/acceptor heterojunctions is a key consideration for organic optoelectronic devices. Herein we report a series of transient absorption and photocurrent experiments as a function of excitation wavelength and temperature for two low-band-gap polymer/fullerene blends to study the mechanism of charge separation at the donor/acceptor interface. For the blend that exhibits the smallest donor/acceptor LUMO energy level offset, the photocurrent quantum yield falls as the photon excitation energy is reduced toward the band gap, but the yield of bound, interfacial charge transfer states rises. This interplay between bound and free charge generation as a function of initial exciton energy provides key evidence for the role of excess energy in driving charge separation of direct relevance to the development of low-band-gap polymers for enhanced solar light harvesting.
Journal of Physical Chemistry Letters | 2013
Artem A. Bakulin; Stoichko D. Dimitrov; Akshay Rao; Philip C. Y. Chow; Christian B. Nielsen; Bob C. Schroeder; Iain McCulloch; Huib J. Bakker; James R. Durrant; Richard H. Friend
The formation of bound electron-hole pairs, also called charge-transfer (CT) states, in organic-based photovoltaic devices is one of the dominant loss mechanisms hindering performance. Whereas CT state dynamics following electron transfer from donor to acceptor have been widely studied, there is not much known about the dynamics of bound CT states produced by hole transfer from the acceptor to the donor. In this letter, we compare the dynamics of CT states formed in the different charge-transfer pathways in a range of model systems. We show that the nature and dynamics of the generated CT states are similar in the case of electron and hole transfer. However the yield of bound and free charges is observed to be strongly dependent on the HOMOD-HOMOA and LUMOD-LUMOA energy differences of the material system. We propose a qualitative model in which the effects of static disorder and sampling of states during the relaxation determine the probability of accessing CT states favorable for charge separation.
Nature Communications | 2015
Stoichko D. Dimitrov; Scot Wheeler; D Niedzialek; Bob C. Schroeder; Hendrik Utzat; Jarvist M. Frost; J Yao; A Gillett; Pabitra Shakya Tuladhar; Iain McCulloch; Jenny Nelson; Durrant
Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whether it involves spin-state mixing is not well understood. In this work, the dynamics of free charge separation competing with recombination to polymer triplet states is studied in two closely related polymer-fullerene blends with differing polymer fluorination and photovoltaic performance. Using time-resolved laser spectroscopic techniques and quantum chemical calculations, we show that lower charge separation in the fluorinated system is associated with the formation of bound electron-hole pairs, which undergo spin-state mixing on the nanosecond timescale and subsequent geminate recombination to triplet excitons. We find that these bound electron-hole pairs can be dissociated by electric fields.
Polymers | 2016
Stoichko D. Dimitrov; Bob C. Schroeder; Christian B. Nielsen; Hugo Bronstein; Zhuping Fei; Iain McCulloch; Martin Heeney; Durrant
The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.
Journal of Materials Chemistry | 2014
Zhenggang Huang; Elisa Collado Fregoso; Stoichko D. Dimitrov; Pabitra Shakya Tuladhar; Ying W. Soon; Hugo Bronstein; Iain Meager; Weimin Zhang; Iain McCulloch; James R. Durrant
Poly-thieno[3,2b]thiophene-diketopyrrolopyrrole-co-thiophene (DPP-TT-T) is a promising low bandgap donor polymer for organic solar cells. In this study we employ two different approaches to improve the device efficiency via optimisation of the morphology of the active layer: tuning of the molecular weight of the polymer and thermal annealing. In the former case, a higher molecular weight was found to yield a more intermixed morphology, resulting in enhanced exciton dissociation and charge separation, as confirmed by atomic force microscopy, and photoluminescence and transient absorption spectroscopies. In the later case, thermal annealing prior to metal electrode deposition increased the photon conversion efficiency to as high as 6.6%, with this enhanced efficiency being maintained even with prolonged annealing (240 hours at 80 °C). This enhancement in performance with thermal annealing was correlated with increased polymer crystallinity.
Journal of Physical Chemistry Letters | 2013
Ute B. Cappel; Simon A. Dowland; Luke X. Reynolds; Stoichko D. Dimitrov; Saif A. Haque
Development of design rules for hybrid inorganic-organic solar cells through understanding charge generation and recombination dynamics is an important pathway for the improvement of solar cell conversion efficiencies. In this Letter, we study the dynamics of charge generation in CdS:polymer blends by transient absorption spectroscopy. We show that charge generation following excitation of the inorganic component is highly efficient and can occur up to a few nanoseconds after excitation, allowing for diffusion of charges within the inorganic component to an interface. In contrast, charge generation following excitation of the organic component occurs on subpicosecond time scales but suffers from two loss processes, incomplete exciton dissociation and geminate recombination.
Journal of the American Chemical Society | 2015
Rolf E. Andernach; Hendrik Utzat; Stoichko D. Dimitrov; Iain McCulloch; Martin Heeney; James R. Durrant; Hugo Bronstein
We report the synthesis of a novel polythiophene-based host-guest copolymer incorporating a Pt-porphyrin complex (TTP-Pt) into the backbone for efficient singlet to triplet polymer exciton sensitization. We elucidated the exciton dynamics in thin films of the material by means of Transient Absorption Spectrosopcy (TAS) on multiple time scales and investigated the mechanism of triplet exciton formation. During sensitization, singlet exciton diffusion is followed by exciton transfer from the polymer backbone to the complex where it undergoes intersystem crossing to the triplet state of the complex. We directly monitored the triplet exciton back transfer from the Pt-porphyrin to the polymer and found that 60% of the complex triplet excitons were transferred with a time constant of 1087 ps. We propose an equilibrium between polymer and porphyrin triplet states as a result of the low triplet diffusion length in the polymer backbone and hence an increased local triplet population resulting in increased triplet-triplet annihilation. This novel system has significant implications for the design of novel materials for triplet sensitized solar cells and upconversion layers.
Chemistry: A European Journal | 2016
Sina Berndl; Stoichko D. Dimitrov; Florian Menacher; Torsten Fiebig; Hans-Achim Wagenknecht
By using (S)-2-amino-1,3-propanediol as a linker, thiazole orange (TO) was incorporated in a dimeric form into DNA. The green fluorescence (λ=530 nm) of the intrastrand TO dimer is quenched, whereas the interstrand TO dimer shows a characteristic redshifted orange emission (λ=585 nm). Steady-state optical spectroscopic methods reveal that the TO dimer fluorescence is independent of the sequential base contexts. Time-resolved pump-probe measurements and excitation spectra reveal the coexistence of conformations, including mainly stacked TO dimers and partially unstacked ones, which yield exciton and excimer contributions to the fluorescence, respectively. The helicity of the DNA framework distorts the excitonic coupling. In particular, the interstrand TO dimer could be regarded as an excitonically interacting base pair with fluorescence readout for DNA hybridization. Finally, the use of this fluorescent readout was representatively demonstrated in molecular beacons.