Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart A. Sandin is active.

Publication


Featured researches published by Stuart A. Sandin.


Science | 2011

Trophic Downgrading of Planet Earth

James A. Estes; John Terborgh; Justin S. Brashares; Mary E. Power; Joel Berger; William J. Bond; Stephen R. Carpenter; Timothy E. Essington; Robert D. Holt; Jeremy B. C. Jackson; Robert J. Marquis; Lauri Oksanen; Tarja Oksanen; Robert T. Paine; Ellen K. Pikitch; William J. Ripple; Stuart A. Sandin; Marten Scheffer; Thomas W. Schoener; Jonathan B. Shurin; A. R. E. Sinclair; Michael E. Soulé; Risto Virtanen; David A. Wardle

Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind’s most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.


PLOS ONE | 2008

Baselines and degradation of coral reefs in the Northern Line Islands.

Stuart A. Sandin; Jennifer E. Smith; Edward E. DeMartini; Elizabeth A. Dinsdale; Simon D. Donner; Alan M. Friedlander; Talina Konotchick; Machel Malay; James E. Maragos; David Obura; Olga Pantos; Gustav Paulay; Morgan Richie; Forest Rohwer; Robert E. Schroeder; Sheila M. Walsh; Jeremy B. C. Jackson; Nancy Knowlton; Enric Sala

Effective conservation requires rigorous baselines of pristine conditions to assess the impacts of human activities and to evaluate the efficacy of management. Most coral reefs are moderately to severely degraded by local human activities such as fishing and pollution as well as global change, hence it is difficult to separate local from global effects. To this end, we surveyed coral reefs on uninhabited atolls in the northern Line Islands to provide a baseline of reef community structure, and on increasingly populated atolls to document changes associated with human activities. We found that top predators and reef-building organisms dominated unpopulated Kingman and Palmyra, while small planktivorous fishes and fleshy algae dominated the populated atolls of Tabuaeran and Kiritimati. Sharks and other top predators overwhelmed the fish assemblages on Kingman and Palmyra so that the biomass pyramid was inverted (top-heavy). In contrast, the biomass pyramid at Tabuaeran and Kiritimati exhibited the typical bottom-heavy pattern. Reefs without people exhibited less coral disease and greater coral recruitment relative to more inhabited reefs. Thus, protection from overfishing and pollution appears to increase the resilience of reef ecosystems to the effects of global warming.


Nature | 2008

Why fishing magnifies fluctuations in fish abundance

Christian N. K. Anderson; Chih-hao Hsieh; Stuart A. Sandin; Roger P. Hewitt; Anne B. Hollowed; John Beddington; Robert M. May; George Sugihara

It is now clear that fished populations can fluctuate more than unharvested stocks. However, it is not clear why. Here we distinguish among three major competing mechanisms for this phenomenon, by using the 50-year California Cooperative Oceanic Fisheries Investigations (CalCOFI) larval fish record. First, variable fishing pressure directly increases variability in exploited populations. Second, commercial fishing can decrease the average body size and age of a stock, causing the truncated population to track environmental fluctuations directly. Third, age-truncated or juvenescent populations have increasingly unstable population dynamics because of changing demographic parameters such as intrinsic growth rates. We find no evidence for the first hypothesis, limited evidence for the second and strong evidence for the third. Therefore, in California Current fisheries, increased temporal variability in the population does not arise from variable exploitation, nor does it reflect direct environmental tracking. More fundamentally, it arises from increased instability in dynamics. This finding has implications for resource management as an empirical example of how selective harvesting can alter the basic dynamics of exploited populations, and lead to unstable booms and busts that can precede systematic declines in stock levels.


PLOS ONE | 2008

Microbial Ecology of Four Coral Atolls in the Northern Line Islands

Elizabeth A. Dinsdale; Olga Pantos; Steven Smriga; Robert Edwards; Florence Angly; Linda Wegley; Mark Hatay; Dana Hall; Elysa Brown; Matthew Haynes; Lutz Krause; Enric Sala; Stuart A. Sandin; Rebecca Vega Thurber; Bette L. Willis; Farooq Azam; Nancy Knowlton; Forest Rohwer

Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated (∼5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the worlds most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide.


Ecology | 2002

POPULATION REGULATION: HISTORICAL CONTEXT AND CONTEMPORARY CHALLENGES OF OPEN VS. CLOSED SYSTEMS

Mark A. Hixon; Stephen W. Pacala; Stuart A. Sandin

By definition, a population is regulated if it persists for many generations with fluctuations bounded above zero with high probability. Regulation thus requires den- sity-dependent negative feedback whereby the population has a propensity to increase when small and decrease when large. Ultimately, extinction occurs due to regulating mechanisms becoming weaker than various disruptive events and stochastic variation. Population reg- ulation is one of the foundational concepts of ecology, yet this paradigm has often been challenged, during the first half of the 20th century when the concept was not clearly defined, and more recently by some who study demographically open populations. The history of ecology reveals that earlier manifestations of the concept focused mostly on competition as the mechanism of population regulation. Because competition is often not evident in nature, it was sometimes concluded that population regulation was therefore also absent. However, predation in the broadest sense can also cause density dependence. By the 1950s, the idea that demographic density dependence was essential (but not suffi- cient) for population regulation was well established, and since then, challenges to the general concept have been short lived. However, some now believe that metapopulations composed of demographically open local populations can persist without density depen- dence. In particular, some recent manifestations of the Recruitment Limitation Hypothesis all but preclude the possibility of regulation. The theory of locally open populations indicates that persistence always relies on direct demographic density dependence at some spatial and temporal scale, even in models re- portedly demonstrating the contrary. There is also increasing empirical evidence, especially in marine systems where competition for space is not self evident, that local density de- pendence is more pervasive than previously assumed and is often caused by predation. However, there are currently insufficient data to test unequivocally whether or not any persistent metapopulation is regulated. The challenge for more complete understanding of regulation of metapopulations lies in combined empirical and theoretical studies that bridge the gap between smaller scale field experiments and larger scale phenomena that can pres- ently be explored solely by theory.


Ecology Letters | 2008

A cross-system synthesis of consumer and nutrient resource control on producer biomass

Daniel S. Gruner; Jennifer E. Smith; Eric W. Seabloom; Stuart A. Sandin; Jacqueline T. Ngai; Helmut Hillebrand; W. Stanley Harpole; James J. Elser; Elsa E. Cleland; Matthew E. S. Bracken; Elizabeth T. Borer; Benjamin M. Bolker

Nutrient availability and herbivory control the biomass of primary producer communities to varying degrees across ecosystems. Ecological theory, individual experiments in many different systems, and system-specific quantitative reviews have suggested that (i) bottom-up control is pervasive but top-down control is more influential in aquatic habitats relative to terrestrial systems and (ii) bottom-up and top-down forces are interdependent, with statistical interactions that synergize or dampen relative influences on producer biomass. We used simple dynamic models to review ecological mechanisms that generate independent vs. interactive responses of community-level biomass. We calibrated these mechanistic predictions with the metrics of factorial meta-analysis and tested their prevalence across freshwater, marine and terrestrial ecosystems with a comprehensive meta-analysis of 191 factorial manipulations of herbivores and nutrients. Our analysis showed that producer community biomass increased with fertilization across all systems, although increases were greatest in freshwater habitats. Herbivore removal generally increased producer biomass in both freshwater and marine systems, but effects were inconsistent on land. With the exception of marine temperate rocky reef systems that showed positive synergism of nutrient enrichment and herbivore removal, experimental studies showed limited support for statistical interactions between nutrient and herbivory treatments on producer biomass. Top-down control of herbivores, compensatory behaviour of multiple herbivore guilds, spatial and temporal heterogeneity of interactions, and herbivore-mediated nutrient recycling may lower the probability of consistent interactive effects on producer biomass. Continuing studies should expand the temporal and spatial scales of experiments, particularly in understudied terrestrial systems; broaden factorial designs to manipulate independently multiple producer resources (e.g. nitrogen, phosphorus, light), multiple herbivore taxa or guilds (e.g. vertebrates and invertebrates) and multiple trophic levels; and - in addition to measuring producer biomass - assess the responses of species diversity, community composition and nutrient status.


PLOS Biology | 2011

Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.

Camilo Mora; Octavio Aburto-Oropeza; Arturo Ayala Bocos; Paula M. Ayotte; Stuart Banks; Andrew G. Bauman; Maria Beger; Sandra Bessudo; David J. Booth; Eran Brokovich; Andrew J. Brooks; Pascale Chabanet; Joshua E. Cinner; Jorge Cortés; Juan José Cruz-Motta; Amílcar Leví Cupul Magaña; Edward E. DeMartini; Graham J. Edgar; David A. Feary; Sebastian C. A. Ferse; Alan M. Friedlander; Kevin J. Gaston; Charlotte Gough; Nicholas A. J. Graham; Alison Green; Hector M. Guzman; Marah J. Hardt; Michel Kulbicki; Yves Letourneur; Andres López Pérez

A global survey of reef fishes shows that the consequences of biodiversity loss are greater than previously anticipated as ecosystem functioning remained unsaturated with the addition of new species. Additionally, reefs worldwide, particularly those most diverse, are highly vulnerable to human impacts that are widespread and likely to worsen due to ongoing coastal overpopulation.


Ecology | 2008

Density-dependent settlement and mortality structure the earliest life phases of a coral population.

Mark J. A. Vermeij; Stuart A. Sandin

The local densities of heterospecifics and conspecifics are known to have profound effects on the dynamics of many benthic species, including rates of settlement and early post-settlement survivorship. We described the early life history of the Caribbean coral, Siderastrea radians by tracking the population dynamics from recently settled planulae to juveniles. Through three years of observation, settlement correlated with the abundance of other benthic organisms, principally turf algae (negatively) and crustose coralline algae (positively). In addition, adult density showed independent effects on coral settlement and early post-settlement survivorship. Settlement rates increased across low levels of adult cover and saturated at a maximum around 10% cover. Early post-settlement survivorship decreased with adult cover, revealing structuring density dependence in coral settlers. The earliest life stages of corals are defined by low survivorship, with survivorship increasing appreciably with colony size. However, recent settlers (one-polyp individuals, < 1-year-old) are more likely to grow into two-polyp juveniles than older single polyps (> 1-year-old) that were delayed in their development. The early benthic phase of corals is defined by a severe demographic bottleneck for S. radians, with appreciable density-dependent and density-independent effects on survivorship. For effective management and restoration of globally imperiled coral reefs, we must focus more attention on this little studied, but dynamic, early life history period of corals.


Ecology Letters | 2009

Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems

Helmut Hillebrand; Elizabeth T. Borer; Matthew E. S. Bracken; Bradley J. Cardinale; Just Cebrian; Elsa E. Cleland; James J. Elser; Daniel S. Gruner; W. Stanley Harpole; Jacqueline T. Ngai; Stuart A. Sandin; Eric W. Seabloom; Jonathan B. Shurin; Jennifer E. Smith; Melinda D. Smith

Plant-herbivore interactions mediate the trophic structure of ecosystems. We use a comprehensive data set extracted from the literature to test the relative explanatory power of two contrasting bodies of ecological theory, the metabolic theory of ecology (MTE) and ecological stoichiometry (ES), for per-capita and population-level rates of herbivory across ecosystems. We found that ambient temperature and herbivore body size (MTE) as well as stoichiometric mismatch (ES) both constrained herbivory, but at different scales of biological organization. Herbivore body size, which varied over 11 orders of magnitude, was the primary factor explaining variation in per-capita rates of herbivory. Stoichiometric mismatch explained more variation in population-level herbivory rates and also in per-capita rates when we examined data from within functionally similar trophic groups (e.g. zooplankton). Thus, predictions from metabolic and stoichiometric theories offer complementary explanations for patterns of herbivory that operate at different scales of biological organization.


Nature | 2016

Bright spots among the world’s coral reefs

Joshua E. Cinner; Cindy Huchery; M.A. MacNeil; Nicholas A. J. Graham; Tim R. McClanahan; Joseph Maina; Eva Maire; John N. Kittinger; Christina C. Hicks; Camilo Mora; Edward H. Allison; Stéphanie D'agata; Andrew S. Hoey; David A. Feary; Larry B. Crowder; Ivor D. Williams; Michel Kulbicki; Laurent Vigliola; Laurent Wantiez; Graham J. Edgar; Rick D. Stuart-Smith; Stuart A. Sandin; Alison Green; Marah J. Hardt; Maria Beger; Alan M. Friedlander; Stuart J. Campbell; K. E. Holmes; Shaun K. Wilson; Eran Brokovich

Ongoing declines in the structure and function of the world’s coral reefs require novel approaches to sustain these ecosystems and the millions of people who depend on them. A presently unexplored approach that draws on theory and practice in human health and rural development is to systematically identify and learn from the ‘outliers’—places where ecosystems are substantially better (‘bright spots’) or worse (‘dark spots’) than expected, given the environmental conditions and socioeconomic drivers they are exposed to. Here we compile data from more than 2,500 reefs worldwide and develop a Bayesian hierarchical model to generate expectations of how standing stocks of reef fish biomass are related to 18 socioeconomic drivers and environmental conditions. We identify 15 bright spots and 35 dark spots among our global survey of coral reefs, defined as sites that have biomass levels more than two standard deviations from expectations. Importantly, bright spots are not simply comprised of remote areas with low fishing pressure; they include localities where human populations and use of ecosystem resources is high, potentially providing insights into how communities have successfully confronted strong drivers of change. Conversely, dark spots are not necessarily the sites with the lowest absolute biomass and even include some remote, uninhabited locations often considered near pristine. We surveyed local experts about social, institutional, and environmental conditions at these sites to reveal that bright spots are characterized by strong sociocultural institutions such as customary taboos and marine tenure, high levels of local engagement in management, high dependence on marine resources, and beneficial environmental conditions such as deep-water refuges. Alternatively, dark spots are characterized by intensive capture and storage technology and a recent history of environmental shocks. Our results suggest that investments in strengthening fisheries governance, particularly aspects such as participation and property rights, could facilitate innovative conservation actions that help communities defy expectations of global reef degradation.

Collaboration


Dive into the Stuart A. Sandin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Forest Rohwer

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Enric Sala

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan M. Friedlander

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas F. Haas

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivor D. Williams

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge