Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart J. Decker is active.

Publication


Featured researches published by Stuart J. Decker.


Nature Medicine | 2013

An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice

Shannon M. Reilly; Shian Huey Chiang; Stuart J. Decker; Louise Chang; Maeran Uhm; Martha J. Larsen; John R. Rubin; Jonathan Mowers; Nicole M. White; Irit Hochberg; Michael Downes; Ruth T. Yu; Christopher Liddle; Ronald M. Evans; Dayoung Oh; Pingping Li; Jerrold M. Olefsky; Alan R. Saltiel

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.


Neuron | 1992

Activation of phosphatidylinositol-3 kinase by nerve growth factor involves indirect coupling of the trk proto-oncogene with src homology 2 domains.

Masahide Ohmichi; Stuart J. Decker; Alan R. Saltiel

Growth factor receptor tyrosine kinases can form stable associations with intracellular proteins that contain src homology (SH) 2 domains, including the p85 regulatory subunit of phosphatidylinositol (PI)-3 kinase. The activation of this enzyme by growth factors is evaluated in PC12 pheochromocytoma cells and NIH 3T3 fibroblasts expressing the pp140c-trk nerve growth factor (NGF) receptor (3T3-c-trk). NGF causes the rapid stimulation of PI-3 kinase activity detected in anti-phosphotyrosine, but not in anti-trk, immunoprecipitates. This effect coincides with the tyrosine phosphorylation of two proteins, with molecular masses of of 100 kd and 110 kd, that coimmunoprecipitate with p85. Similar phosphorylation patterns are induced when an immobilized fusion protein containing the amino-terminal SH2 domain of p85 is used to precipitate tyrosine-phosphorylated proteins. Thus, although NGF produces the rapid activation of PI-3 kinase through a mechanism that involves tyrosine phosphorylation, there is no evidence for tyrosine phosphorylation of p85, or for its ligand-dependent association with the NGF receptor. Perhaps another phosphoprotein may link the NGF receptor to this enzyme.


Molecular and Cellular Biology | 2001

SH2-Containing Inositol 5′-Phosphatase SHIP2 Associates with the p130Cas Adapter Protein and Regulates Cellular Adhesion and Spreading

Nagendra Prasad; Robert S. Topping; Stuart J. Decker

ABSTRACT In a previous study, we found that the SHIP2 protein became tyrosine phosphorylated and associated with the Shc adapter protein in response to the treatment of cells with growth factors and insulin (T. Habib, J. A. Hejna, R. E. Moses, and S. J. Decker, J. Biol. Chem. 273:18605–18609, 1998). We describe here a novel interaction between SHIP2 and the p130Cas adapter protein, a mediator of actin cytoskeleton organization. SHIP2 and p130Cas association was detected in anti-SHIP2 immunoprecipitates from several cell types. Reattachment of trypsinized cells stimulated tyrosine phosphorylation of SHIP2 and increased the formation of a complex containing SHIP2 and a faster-migrating tyrosine-phosphorylated form of p130Cas. The faster-migrating form of p130Cas was no longer recognized by antibodies to the amino terminus of p130Cas and appeared to be generated through proteolysis. Interaction of the SHIP2 protein with the various forms of p130Cas was mediated primarily through the SH2 domain of SHIP2. Immunofluorescence studies indicated that SHIP2 localized to focal contacts and to lamellipodia. Increased adhesion was observed in HeLa cells transiently expressing exogenous WT-SHIP2. These effects were not seen with SHIP2 possessing a mutation in the SH2 domain (R47G). Transfection of a catalytic domain deletion mutant of SHIP2 (ΔRV) inhibited cell spreading. Taken together, our studies suggest an important role for SHIP2 in adhesion and spreading.


Journal of Biological Chemistry | 2005

SH2-containing 5′-Inositol Phosphatase, SHIP2, Regulates Cytoskeleton Organization and Ligand-dependent Down-regulation of the Epidermal Growth Factor Receptor

Nagendra K. Prasad; Stuart J. Decker

Phosphoinositide lipid second messengers are integral components of signaling pathways mediated by insulin, growth factors, and integrins. SHIP2 dephosphorylates phosphatidylinositol 3,4,5-trisphosphate generated by the activated phosphatidylinositol 3′-kinase. SHIP2 down-regulates insulin signaling and is present at higher levels in diabetes and obesity. SHIP2 associates with p130Cas and filamin, regulators of cell adhesion/migration and cytoskeleton, influencing cell adhesion/spreading. Type I collagen specifically induces Src-mediated tyrosine phosphorylation of SHIP2. To better understand SHIP2 function, we employed RNA interference (RNAi) approach to silence the expression of the endogenous SHIP2 in HeLa cells. Suppression of SHIP2 levels caused severe F-actin deformities characterized by weak cortical actin and peripheral actin spikes. SHIP2 RNAi cells displayed cell-spreading defects involving a notable absence of focal contact structures and the formation of multiple slender membrane protrusions capped by actin spikes. Furthermore, decreased SHIP2 levels altered distribution of early endocytic antigen 1 (EEA1)-positive endocytic vesicles and of vesicles containing internalized epidermal growth factor (EGF) and transferrin. EGF treatment of SHIP2 RNAi cells led to the following: enhanced EGF receptor (EGFR) degradation; increased EGFR ubiquitination; and increased association of EGFR with c-Cbl ubiquitin ligase. Taken together, these experiments demonstrate that SHIP2 functions in the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Accordingly, we suggest that, in HeLa cells, SHIP2 plays a distinct role in signaling pathways mediated by integrins and growth factor receptors.


Molecular Biology of the Cell | 2011

A Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation in insulin action

Xiao Wei Chen; Dara Leto; Tingting Xiong; Genggeng Yu; Alan Cheng; Stuart J. Decker; Alan R. Saltiel

It is shown that RalA is regulated by a Ral GAP complex (RGC 1/2) in insulin action and links PI 3-kinase signaling to RalA activation. Akt phosphorylates the complex and inhibits its function, resulting in increased RalA activity and glucose uptake.


Biochemical and Biophysical Research Communications | 1991

Nerve growth factor binds to the 140 kd trk proto-oncogene product and stimulates its association with the src homology domain of phospholipase C γ1

Masahide Ohmichi; Stuart J. Decker; Long Pang; Alan R. Saltiel

Abstract The cellular actions of nerve growth factor (NGF) involve regulation of protein phosphorylation. In PC-12 pheochromocytoma cells, exposure of [ 125 I]NGF followed by crosslinking indicates that the ligand binds to two discreet receptors, the previously described 75 kd protein, as well as the trk proto-oncogene product pp140 c-trk . Competition experiments reveal that of the two, pp140 c-trk binds to NGF with higher affinity. Following exposure to NGF, pp140 c-trk undergoes a rapid autophosphorylation on tyrosine residues, and concomitantly phosphorylates and associates with phospholipase Cγ1 (PLCγ1), through interaction with its src homology domains. The binding of NGF to pp140 c-trk with high affinity, the NGF-dependent activation of its tyrosine kinase activity and the specific association with the effector molecule, PLCγ1, suggests that this is the biologically relevant signaling receptor for NGF.


Molecular and Cellular Biology | 1995

Raf-1 N-terminal sequences necessary for Ras-Raf interaction and signal transduction.

K. Pumiglia; Yu-Hua Chow; J. Fabian; D. Morrison; Stuart J. Decker; Richard Jove

Raf-1 is a serine/threonine protein kinase that transduces signals from cell surface receptors to the nucleus. Interaction of Ras with a regulatory domain in the N-terminal half of Raf-1 is postulated to regulate Raf-1 protein kinase and signaling activities. To better understand molecular interactions of Ras with Raf-1 and regulation of the Raf-1 kinase, a panel of Raf-1 N-terminal mutants expressed in the baculovirus-insect cell system was used for mapping the precise region necessary for Ras interaction in the context of full-length, functional Raf-1 kinase. An 80-amino-acid sequence in Raf-1 between positions 53 and 132 was found to confer the ability to bind Ras protein in vitro and in infected insect cells. Deletion of residues 53 to 132 abolished Raf-1 kinase activation by Ras in insect cells, indicating that activation of the Raf-1 kinase by Ras requires the capacity to physically interact with Ras. By contrast, deletion of this Ras-binding site did not diminish activation of Raf-1 kinase by Src, implying that Src and Ras can activate Raf-1 through independent mechanisms. Significantly, Raf-1 mutants lacking the entire zinc finger motif or containing substitutions of two critical cysteine residues in the zinc finger retained the ability to bind Ras and to be activated by this interaction. Consistent with results obtained in the baculovirus-insect cell system, deletion of residues 53 to 132 but not mutations in the zinc finger motif abrogated the ability of kinase-inactive, dominant negative Raf-1 to block Ras-mediated signaling in Xenopus oocytes. Together, these results provide evidence that the direct physical interaction of Ras with Raf-1 amino acids 53 to 132 is required for activation of the Raf-1 kinase and signaling activities by Ras but not by Src. Furthermore, the adjacent zinc finger motif in Raf-1 is not essential either for interaction with Ras or for activation of the Raf-1 kinase.


Molecular and Cellular Biology | 1991

Molecular features of the viral and cellular Src kinases involved in interactions with the GTPase-activating protein.

B K Brott; Stuart J. Decker; M C O'Brien; Richard Jove

GTPase-activating protein (GAP) enhances the rate of GTP hydrolysis by cellular Ras proteins and is implicated in mitogenic signal transduction. GAP is phosphorylated on tyrosine in cells transformed by Rous sarcoma virus and serves as an in vitro substrate of the viral Src (v-Src) kinase. Our previous studies showed that GAP complexes stably with normal cellular Src (c-Src), although its association with v-Src is less stable. To further investigate the molecular basis for interactions between GAP and the Src kinases, we examined GAP association with and phosphorylation by a series of c-Src and v-Src mutants. Analysis of GAP association with c-Src/v-Src chimeric proteins demonstrates that GAP associates stably with Src proteins possessing low kinase activity and poorly with activated Src kinases, especially those that lack the carboxy-terminal segment of c-Src containing the regulatory amino acid Tyr-527. Phosphorylated Tyr-527 is a major determinant of c-Src association with GAP, as demonstrated by c-Src point mutants in which Tyr-527 is changed to Phe. While the isolated amino-terminal half of the c-Src protein is insufficient for stable GAP association, analysis of point substitutions of highly conserved amino acid residues in the c-Src SH2 region indicate that this region also influences Src-GAP complex formation. Therefore, our results suggest that both Tyr-527 phosphorylation and the SH2 region contribute to stable association of c-Src with GAP. Analysis of in vivo phosphorylation of GAP by v-Src mutants containing deletions encompassing the SH2, SH3, and unique regions suggests that the kinase domain of v-Src contains sufficient substrate specificity for GAP phosphorylation. Even though tyrosine phosphorylation of GAP correlates to certain extent with the transforming ability of various c-Src and v-Src mutants, our data suggest that other GAP-associated proteins may also have roles in Src-mediated oncogenic transformation. These findings provide additional evidence for the specificity of Src interactions with GAP and support the hypothesis that these interactions contribute to the biological functions of the Scr kinases.


Biochemistry | 2009

Specific Tyrosine Phosphorylations Mediate Signal-Dependent Stimulation of SHIP2 Inositol Phosphatase Activity, while the SH2 Domain Confers an Inhibitory Effect To Maintain the Basal Activity

Nagendra Prasad; Michael Werner; Stuart J. Decker

SH2 domain-containing 5-inositol phosphatase (SHIP2) is implicated in the development of type 2 diabetes and cancer. Tyrosine phosphorylation of SHIP2 is shown to enhance its phosphatase activity. Using IP4 as a substrate, we show here that tyrosines 986, 987, and 1135 are critical for EGF-induced stimulation of SHIP2 activity. SHIP2 with a disrupted SH2 domain (R47G mutation) displays higher constitutive activity than wild-type SHIP2. Deletion of the C-terminus region similarly activates SHIP2. Thus, the SH2 domain of SHIP2, in conjunction with the C-terminus, confers an inhibitory effect to maintain a low basal activity, and signal-induced tyrosine phosphorylations overcome this effect to activate SHIP2.


Nature Medicine | 2005

Staying in SHIP shape

Stuart J. Decker; Alan R. Saltiel

The phosphatase SHIP2 has been the focus of drug development efforts for diabetes. This distinction is based in part on work suggesting that the molecule is central to the regulation of glucose levels in tissues and blood. An analysis of a SHIP2 knockout mouse changes this viewpoint and provides new directions for therapeutic intervention (pages 199–205).

Collaboration


Dive into the Stuart J. Decker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Jove

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Long Pang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge