Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tomi K. Sawyer is active.

Publication


Featured researches published by Tomi K. Sawyer.


Cancer Cell | 2009

AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.

Thomas O'Hare; William C. Shakespeare; Xiaotian Zhu; Christopher A. Eide; Victor M. Rivera; Frank Wang; Lauren T. Adrian; Tianjun Zhou; Wei Sheng Huang; Qihong Xu; Chester A. Metcalf; Jeffrey W. Tyner; Marc Loriaux; Amie S. Corbin; Scott Wardwell; Yaoyu Ning; Jeffrey Keats; Yihan Wang; Raji Sundaramoorthi; Mathew Thomas; Dong Zhou; Joseph Snodgrass; Lois Commodore; Tomi K. Sawyer; David C. Dalgarno; Michael W. Deininger; Brian J. Druker; Tim Clackson

Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL(T315I) mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL(T315I)-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.


Chemical Biology & Drug Design | 2010

Probing the α‐Helical Structural Stability of Stapled p53 Peptides: Molecular Dynamics Simulations and Analysis

Zuojun Guo; Udayan Mohanty; Justin Noehre; Tomi K. Sawyer; Woody Sherman; Goran Krilov

Reactivation of the p53 cell apoptosis pathway through inhibition of the p53‐hDM2 interaction is a viable approach to suppress tumor growth in many human cancers and stabilization of the helical structure of synthetic p53 analogs via a hydrocarbon cross‐link (staple) has been found to lead to increased potency and inhibition of protein–protein binding (J. Am. Chem. Soc. 129: 5298). However, details of the structure and dynamic stability of the stapled peptides are not well understood. Here, we use extensive all‐atom molecular dynamics simulations to study a series of stapled α‐helical peptides over a range of temperatures in solution. The peptides are found to exhibit substantial variations in predicted α‐helical propensities that are in good agreement with the experimental observations. In addition, we find significant variation in local structural flexibility of the peptides with the position of the linker, which appears to be more closely related to the observed differences in activity than the absolute α‐helical stability. These simulations provide new insights into the design of α‐helical stapled peptides and the development of potent inhibitors of α‐helical protein–protein interfaces.


Journal of Medicinal Chemistry | 2010

Discovery of 3-[2-(imidazo[1,2-b]pyridazin-3-yl)ethynyl]-4-methyl-N-{4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl}benzamide (AP24534), a potent, orally active pan-inhibitor of breakpoint cluster region-abelson (BCR-ABL) kinase including the T315I gatekeeper mutant.

Wei-Sheng Huang; Chester A. Metcalf; Raji Sundaramoorthi; Yihan Wang; Dong Zou; R. Mathew Thomas; Xiaotian Zhu; Lisi Cai; David Wen; Shuangying Liu; Jan Antoinette C. Romero; Jiwei Qi; Ingrid Chen; Geetha Banda; Scott P. Lentini; Sasmita Das; Qihong Xu; Jeff Keats; Frank Wang; Scott Wardwell; Yaoyu Ning; Joseph Snodgrass; Marc I. Broudy; Karin Russian; Tianjun Zhou; Lois Commodore; Narayana I. Narasimhan; Qurish K. Mohemmad; John Iuliucci; Victor M. Rivera

In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.


Cancer Research | 2005

Identification of Src-Specific Phosphorylation Site on Focal Adhesion Kinase: Dissection of the Role of Src SH2 and Catalytic Functions and Their Consequences for Tumor Cell Behavior

Valerie G. Brunton; Egle Avizienyte; Valerie J. Fincham; Bryan Serrels; Chester A. Metcalf; Tomi K. Sawyer; Margaret C. Frame

Src tyrosine kinase expression and activity are elevated during colon cancer progression. How this contributes to the malignant phenotype is not fully understood. We show that in KM12C colon carcinoma cells, expression of kinase-deficient Src proteins (SrcMF and Src251) does not alter cell growth. Src kinase activity is required for turnover of cell-matrix adhesions and, in particular, the Src-dependent phosphorylation of focal adhesion kinase (FAK) is required for their disassembly. Surprisingly, we found that expression of SrcMF or Src251 resulted in increased tyrosine phosphorylation of FAK on Tyr(407), Tyr(576), Tyr(577), and Tyr(861), which are considered to be Src kinase substrates. This Src kinase-independent phosphorylation of FAK required an intact Src SH2 domain that mediates association of Src and FAK at peripheral adhesions. Use of a novel highly potent and selective Src kinase inhibitor AP23464 combined with experiments in Src/Fyn/Yes-deficient fibroblasts showed that increased phosphorylation of FAK in cells expressing SrcMF did not require Src-like kinases. However, specific phosphorylation on Tyr(925) of FAK was not evident in SrcMF- or Src251-expressing cells, and lack of Src kinase-dependent phosphorylation on this site was associated with impaired adhesion turnover. Our data show that Src kinase activity is required for adhesion turnover associated with cell migration in cancer cells and that, in addition to the catalytic activity, Src also acts as an adaptor to recruit other kinases that can phosphorylate key substrates including FAK. These studies have implications for tumor progression with respect to the use of Src kinase inhibitors.


Biopolymers | 1998

Src homology-2 domains: Structure, mechanisms, and drug discovery †

Tomi K. Sawyer

Src homology‐2 (SH2) domains and their associated catalytic or noncatalytic proteins constitute critical signal transduction targets for drug discovery. Such SH2 proteins are found in the regulation of a number of cellular processes, including growth, mitogenesis, motility, metabolism, immune response, and gene transcription. From the relationship of tyrosine phosphorylation and intracellular regulation by protein–tyrosine kinases (PTKs) and protein–tyrosine phosphatases (PTPs), the dynamic and reversible binding interactions of SH2 domain containing proteins with their cognate phosphotyrosine (pTyr) containing proteins provide a third dimensionality to the orchestration of signal transduction pathways that exist as a result of pTyr formation, degradation, and molecular recognition events. This review highlights several key research achievements impacting our current understanding of SH2 structure, mechanisms, and drug discovery that underlie the role(s) of SH2 domains in signal transduction processes, cellular functions, and disease states.


Journal of the American Society for Mass Spectrometry | 1997

A study of Src SH2 domain protein-phosphopeptide binding interactions by electrospray ionization mass spectrometry

Joseph A. Loo; Peifeng Hu; Patrick McConnell; W. Tom Mueller; Tomi K. Sawyer; Venkataraman Thanabal

The noncovalent binding of various peptide ligands to pp60src (Src) SH2 (Src homology 2) domain protein (12.9 ku) has been used as a model system for development of electrospray ionization mass spectrometry (ESI-MS) as a tool to study noncovalently bound complexes. SH2 motifs in proteins are critical in the signal transduction pathways of the tyrosine kinase growth factor receptors and recognize phosphotyrosine-containing proteins and peptides. ESI-MS with a magnetic sector instrument and array detection has been used to detect the protein-peptide complex with low-picomole sensitivity. The relative abundances of the multiply charged ions for the complex formed between Src SH2 protein and several nonphosphorylated and phosphorylated peptides have been compared. The mass spectrometry data correlate well to the measured binding constants derived from solution-based methods, indicating that the mass spectrometry-based method can be used to assess the affinity of such interactions. Solution-phase equilibrium constants may be determined by measuring the amount of bound and unbound species as a function of concentration for construction of a Scatchard graph. ESI-MS of a solution containing Src SH2 with a mixture of phosphopeptides showed the expected protein-phosphopeptide complex as the dominant species in the mass spectrum, demonstrating the method’s potential for screening mixtures from peptide libraries.


British Journal of Cancer | 2006

Vascular endothelial growth factor receptor-1 mediates migration of human colorectal carcinoma cells by activation of Src family kinases

Donald P. Lesslie; J. M. Summy; N. U. Parikh; Fan Fan; Jose G. Trevino; Tomi K. Sawyer; Chester A. Metcalf; William C. Shakespeare; Daniel J. Hicklin; Lee M. Ellis; Gary E. Gallick

Vascular endothelial growth factor (VEGF) is the predominant pro-angiogenic cytokine in human malignancy, and its expression correlates with disease recurrence and poor outcomes in patients with colorectal cancer. Recently, expression of vascular endothelial growth factor receptors (VEGFRs) has been observed on tumours of epithelial origin, including those arising in the colon, but the molecular mechanisms governing potential VEGF-driven biologic functioning in these tumours are not well characterised. In this report, we investigated the role of Src family kinases (SFKs) in VEGF-mediated signalling in human colorectal carcinoma (CRC) cell lines. Vascular endothelial growth factor specifically activated SFKs in HT29 and KM12L4 CRC cell lines. Further, VEGF stimulation resulted in enhanced cellular migration, which was effectively blocked by pharmacologic inhibition of VEGFR-1 or Src kinase. Correspondingly, migration studies using siRNA clones with reduced Src expression confirmed the requirement for Src in VEGF-induced migration in these cells. Furthermore, VEGF treatment enhanced VEGFR-1/SFK complex formation and increased tyrosine phosphorylation of focal adhesion kinase, p130 cas and paxillin. Finally, we demonstrate that VEGF-induced migration is not due, at least in part, to VEGF acting as a mitogen. These results suggest that VEGFR-1 promotes migration of tumour cells through a Src-dependent pathway linked to activation of focal adhesion components that regulate this process.


General and Comparative Endocrinology | 1989

α-melanotropin: The minimal active sequence in the lizard skin bioassay

Ana Maria de Lauro Castrucci; Mac E. Hadley; Tomi K. Sawyer; Brian C. Wilkes; Fahad Al-Obeidi; Douglas J. Staples; A.E. de Vaux; O. Dym; M.F. Hintz; J.P. Riehm; K.R. Rao; Victor J. Hruby

alpha-Melanotropin (alpha-melanocyte-stimulating hormone, alpha-MSH) is a tridecapeptide, Ac-Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2. The minimal sequence of alpha-MSH required for agonism in the lizard (Anolis carolinensis) skin bioassay was determined to be Ac-His-Phe-Arg-Trp-NH2 (Ac-alpha-MSH6-9-NH2). Smaller fragments of this sequence (Ac-alpha-MSH6-8-NH2, Ac-alpha-MSH6-7-NH2, Ac-alpha-MSH7-9-NH2, and Ac-alpha-MSH7-8-NH2) were devoid of melanotropic activity. The tetrapeptide, Ac-alpha-MSH7-10-NH2, was also inactive, thus again demonstrating the importance of His at position 6 for minimal activity. The important potentiating amino acids were found to be Met-4, Lys-11, and Pro-12, since Ac-alpha-MSH4-10-NH2 was about 100 times more potent than Ac-alpha-MSH5-10-NH2, and Ac-[Nle4]-alpha-MSH4-11-NH2 was about 40 times more potent than Ac-alpha-MSH4-10-NH2 or Ac-[Nle4]-alpha-MSH4-10-NH2. Ac-alpha-MSH4-12-NH2 and Ac-[Nle4]-alpha-MSH4-12-NH2 were equipotent and about six times more potent than alpha-MSH. Since [Nle4]-alpha-MSH and Ac-[Nle4]-alpha-MSH4-13-NH2 were both equipotent but about sixfold less active than Ac-[Nle4]-alpha-MSH4-12-NH2, it is clear that valine at position 13 does not contribute to the potency of alpha-MSH, except possibly in a negative way. The minimal message sequence for equipotency to alpha-MSH appears to be Ac-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-NH2, since the analog, Ac-[Nle4]-alpha-MSH4-11-NH2, was as active as the native hormone. Ser-1, Tyr-2, Ser-3, Glu-5, and Val-13 are not important for melanotropic potency since Ac-alpha-MSH4-12-NH2 was more potent than alpha-MSH, and Ac-alpha-MSH5-10-NH2 and Ac-alpha-MSH6-10-NH2 were equipotent, being about 4,000 times less active than alpha-MSH.


Molecular Cancer Therapeutics | 2005

AP23846, a novel and highly potent Src family kinase inhibitor, reduces vascular endothelial growth factor and interleukin-8 expression in human solid tumor cell lines and abrogates downstream angiogenic processes

Justin M. Summy; Jose G. Trevino; Donald P. Lesslie; Cheryl H. Baker; William C. Shakespeare; Yihan Wang; Raji Sundaramoorthi; Chester A. Metcalf; Jeffrey Keats; Tomi K. Sawyer; Gary E. Gallick

c-Src is frequently activated in human malignancies, including colon, breast, and pancreatic carcinomas. Several recent studies have shown that activation of Src family kinases leads to tumor progression and metastasis by increasing cellular migration and invasion, promoting cell growth and survival, and deregulating expression of proangiogenic molecules. Therefore, selective inhibitors of Src are being developed for cancer therapy. In this study, we characterize the biological effects of the novel ATP-based Src family kinase inhibitor, AP23846, in tumor cells with high Src activity. As a lead compound, AP23846 is a potent c-Src kinase inhibitor (IC50 ∼0.5 nmol/L in vitro, ∼10-fold more potent than PP2, the most widely used commercially available Src family kinase inhibitor). At concentrations of 1 μmol/L, AP23846 led to complete Src inhibition for 48 hours in cells. No cytotoxicity was observed under these conditions, although proliferation rates were slower. Therefore, this was an excellent inhibitor to examine Src-regulated signaling pathways in tumor cells. AP23846 reduced cellular migration, vascular endothelial growth factor, and interleukin-8 in a dose-dependent fashion in pancreatic adenocarcinoma cells grown in vitro. Correspondingly, cell culture supernatants from L3.6pl pancreatic adenocarcinoma cells pretreated with AP23846 failed to promote migration of hepatic endothelial cells in vitro and failed to support angiogenesis into gel foams implanted s.c. in mice in vivo. These results suggest that Src inhibitors affect biological properties of tumor progression and may be useful as cancer therapeutic agents in more advanced disease. [Mol Cancer Ther 2005;4(12):1900–11]


Annals of the New York Academy of Sciences | 1993

Design, synthesis, and conformation of superpotent and prolonged acting melanotropins.

Victor J. Hruby; Shubh D. Sharma; Katalin Toth; John Yan Jaw; Fahad Al-Obeidi; Tomi K. Sawyer; Mac E. Hadley

a-Melanotropin (a-MSH, Ac-Ser-Tyr-Ser-Met-Glus-His-Phe-Arg-T~-GlyloLys-Pro-Val-NH,) has a long and storied history, being one of the first peptide hormones to be studied as a crude extract from the pituitary and to be isolated in pure form and have its structure determined. It was early recognized to have essentially the same N-terminal tridecapeptide sequence as adrenocorticotropic hormone (ACTH, corticotropin) except that the N-terminal was acetylated in the case of a-MSH but not in the case of ACTH, indicating that their biosyntheses were different. Subsequently it was discovered that a-MSH and ACTH were derived from the same gene, currently referred to as proopiomelanocortin (POMC), of which much more is discussed elsewhere in the proceedings of this meeting. ACTH does have weak melanotropinlike activities in certain a-MSH-specific assays such as the frog skin bioassay, but the acetyl group is important to maximize the biological potency of the native a-MSH (a-MSH is about 100 times more potent than ACTH in the classical pigmentary assays). It is now understood that though a-MSH was originally discovered as a peptide hormone, affecting pigmentation in peripheral tissues especially the skin, there is much anatomical and pharmacological evidence that a-MSH is found in the brain where it and/or ACTH and its fragments have a growing list of proposed neurotransmitter, neuromodulatory, neuroimmunological, behavioral, and other biological activities. Much more is said elsewhere in the proceedings of this meeting regarding these sites of action of this remarkable hormone. This paper, which is devoted to the chemistry and structure-biological activity relationships, will focus entirely on a-MSHs activities at peripheral receptors responsible for pigmentation, since this is the primary receptor for which extensive structure-biological activity studies have been done. Structure-activity studies on a-MSH began immediately with its isolation and

Collaboration


Dive into the Tomi K. Sawyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge