Stuart J. Roy
University of Adelaide
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stuart J. Roy.
The Plant Cell | 2009
Inge Skrumsager Møller; Matthew Gilliham; Deepa Jha; Gwenda M Mayo; Stuart J. Roy; Juliet C. Coates; Jim Haseloff; Mark Tester
Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.
Current Opinion in Biotechnology | 2014
Stuart J. Roy; Sónia Negrão; Mark Tester
Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker-assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.
Plant Cell and Environment | 2009
Karthika Rajendran; Mark Tester; Stuart J. Roy
Salinity stress is a major factor inhibiting cereal yield throughout the world. Tolerance to salinity stress can be considered to contain three main components: Na(+) exclusion, tolerance to Na(+) in the tissues and osmotic tolerance. To date, most experimental work on salinity tolerance in cereals has focused on Na(+) exclusion due in part to its ease of measurement. It has become apparent, however, that Na(+) exclusion is not the sole mechanism for salinity tolerance in cereals, and research needs to expand to study osmotic tolerance and tissue tolerance. Here, we develop assays for high throughput quantification of Na(+) exclusion, Na(+) tissue tolerance and osmotic tolerance in 12 Triticum monococcum accessions, mainly using commercially available image capture and analysis equipment. We show that different lines use different combinations of the three tolerance mechanisms to increase their total salinity tolerance, with a positive correlation observed between a plants total salinity tolerance and the sum of its proficiency in Na(+) exclusion, osmotic tolerance and tissue tolerance. The assays developed in this study can be easily adapted for other cereals and used in high throughput, forward genetic experiments to elucidate the molecular basis of these components of salinity tolerance.
Plant Methods | 2011
Mahmood Reza Golzarian; Ross Frick; Karthika Rajendran; Bettina Berger; Stuart J. Roy; Mark Tester; Desmond S. Lun
With the establishment of advanced technology facilities for high throughput plant phenotyping, the problem of estimating plant biomass of individual plants from their two dimensional images is becoming increasingly important. The approach predominantly cited in literature is to estimate the biomass of a plant as a linear function of the projected shoot area of plants in the images. However, the estimation error from this model, which is solely a function of projected shoot area, is large, prohibiting accurate estimation of the biomass of plants, particularly for the salt-stressed plants. In this paper, we propose a method based on plant specific weight for improving the accuracy of the linear model and reducing the estimation bias (the difference between actual shoot dry weight and the value of the shoot dry weight estimated with a predictive model). For the proposed method in this study, we modeled the plant shoot dry weight as a function of plant area and plant age. The data used for developing our model and comparing the results with the linear model were collected from a completely randomized block design experiment. A total of 320 plants from two bread wheat varieties were grown in a supported hydroponics system in a greenhouse. The plants were exposed to two levels of hydroponic salt treatments (NaCl at 0 and 100 mM) for 6 weeks. Five harvests were carried out. Each time 64 randomly selected plants were imaged and then harvested to measure the shoot fresh weight and shoot dry weight. The results of statistical analysis showed that with our proposed method, most of the observed variance can be explained, and moreover only a small difference between actual and estimated shoot dry weight was obtained. The low estimation bias indicates that our proposed method can be used to estimate biomass of individual plants regardless of what variety the plant is and what salt treatment has been applied. We validated this model on an independent set of barley data. The technique presented in this paper may extend to other plants and types of stresses.
Current Opinion in Plant Biology | 2011
Stuart J. Roy; Elise J. Tucker; Mark Tester
Abiotic stress tolerance is complex, but as phenotyping technologies improve, components that contribute to abiotic stress tolerance can be quantified with increasing ease. In parallel with these phenomics advances, genetic approaches with more complex genomes are becoming increasingly tractable as genomic information in non-model crops increases and even whole crop genomes can be re-sequenced. Thus, genetic approaches to elucidating the molecular basis to abiotic stress tolerance in crops are becoming more easily achievable.
PLOS ONE | 2010
Darren Plett; Gehan Safwat; Matthew Gilliham; Inge Skrumsager Møller; Stuart J. Roy; Neil J. Shirley; Andrew K. Jacobs; Alexander A. T. Johnson; Mark Tester
Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na+) exclusion and salinity tolerance in Arabidopsis. In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na+ exclusion under conditions of salinity stress. The feasibility of a similar biotechnological approach in crop plants was explored using a GAL4-GFP enhancer trap rice line to drive expression of AtHKT1;1 specifically in the root cortex. Compared with the background GAL4-GFP line, the rice plants expressing AtHKT1;1 had a higher fresh weight under salinity stress, which was related to a lower concentration of Na+ in the shoots. The root-to-shoot transport of 22Na+ was also decreased and was correlated with an upregulation of OsHKT1;5, the native transporter responsible for Na+ retrieval from the transpiration stream. Interestingly, in the transgenic Arabidopsis plants overexpressing AtHKT1;1 in the cortex and epidermis, the native AtHKT1;1 gene responsible for Na+ retrieval from the transpiration stream, was also upregulated. Extra Na+ retrieved from the xylem was stored in the outer root cells and was correlated with a significant increase in expression of the vacuolar pyrophosphatases (in Arabidopsis and rice) the activity of which would be necessary to move the additional stored Na+ into the vacuoles of these cells. This work presents an important step in the development of abiotic stress tolerance in crop plants via targeted changes in mineral transport.
Plant Cell and Environment | 2008
Stuart J. Roy; Matthew Gilliham; Bettina Berger; Pauline A. Essah; C. Cheffings; Anthony J. Miller; Romola J. Davenport; Lai-Hua Liu; M. J. Skynner; Julia M. Davies; P. Richardson; Roger A. Leigh; Mark Tester
There is increasing evidence of the important roles of glutamate receptors (GLRs) in plant development and in adaptation to stresses. However, the studies of these putative ion channels, both in planta and in Xenopus oocytes, may have been limited by our lack of knowledge of possible GLR heteromer formation in plants. We have developed a modification of the single-cell sampling technique to investigate GLR co-expression, and thus potential heteromer formation, in single cells of Arabidopsis thaliana leaves. Micro-EXpression amplification (MEX) has allowed us to amplify gene transcripts from a single cell, enabling expression of up to 100 gene transcripts to be assayed. We measured, on average, the transcripts of five to six different AtGLRs in a single cell. However, no consistent patterns of co-expression or cell-type-specific expression were detected, except that cells sampled from the same plant showed similar expression profiles. The only discernible feature was the detection of AtGLR3.7 in every cell examined, an observation supported by GUS staining patterns in plants stably expressing promoter::uidA fusions. In addition, we found AtGLR3.7 expression in oocytes induces a Ba2+-, Ca2+- and Na+-permeable plasma membrane conductance.
Plant Cell and Environment | 2010
Deepa Jha; Neil J. Shirley; Mark Tester; Stuart J. Roy
Salinity tolerance can be attributed to three different mechanisms: Na+ exclusion from the shoot, Na+ tissue tolerance and osmotic tolerance. Although several key ion channels and transporters involved in these processes are known, the variation in expression profiles and the effects of these proteins on Na+ transport in different accessions of the same species are unknown. Here, expression profiles of the genes AtHKT1;1, AtSOS1, AtNHX1 and AtAVP1 are determined in four ecotypes of Arabidopsis thaliana. Not only are these genes differentially regulated between ecotypes, the expression levels of the genes can be linked to the concentration of Na+ in the plant. An inverse relationship was found between AtSOS1 expression in the root and total plant Na+ accumulation, supporting a role for AtSOS1 in Na+ efflux from the plant. Similarly, ecotypes with high expression levels of AtHKT1;1 in the root had lower shoot Na+ concentrations, due to the hypothesized role of AtHKT1;1 in retrieval of Na+ from the transpiration stream. The inverse relationship between shoot Na+ concentration and salinity tolerance typical of most cereal crop plants was not demonstrated, but a positive relationship was found between salt tolerance and levels of AtAVP1 expression, which may be related to tissue tolerance.
BMC Plant Biology | 2014
Getnet D. Adem; Stuart J. Roy; Meixue Zhou; Jp Bowman; Sergey Shabala
BackgroundSalinity tolerance is a physiologically multi-faceted trait attributed to multiple mechanisms. Three barley (Hordeum vulgare) varieties contrasting in their salinity tolerance were used to assess the relative contribution of ionic, osmotic and oxidative stress components towards overall salinity stress tolerance in this species, both at the whole-plant and cellular levels. In addition, transcriptional changes in the gene expression profile were studied for key genes mediating plant ionic and oxidative homeostasis (NHX; RBOH; SOD; AHA and GORK), to compare a contribution of transcriptional and post-translational factors towards the specific components of salinity tolerance.ResultsOur major findings are two-fold. First, plant tissue tolerance was a dominating component that has determined the overall plant responses to salinity, with root K+ retention ability and reduced sensitivity to stress-induced hydroxyl radical production being the main contributing tolerance mechanisms. Second, it was not possible to infer which cultivars were salinity tolerant based solely on expression profiling of candidate genes at one specific time point. For the genes studied and the time point selected that transcriptional changes in the expression of these specific genes had a small role for barley’s adaptive responses to salinity.ConclusionsFor better tissue tolerance, sodium sequestration, K+ retention and resistance to oxidative stress all appeared to be crucial. Because these traits are highly interrelated, it is suggested that a major progress in crop breeding for salinity tolerance can be achieved only if these complementary traits are targeted at the same time. This study also highlights the essentiality of post translational modifications in plant adaptive responses to salinity.
Plant Biotechnology Journal | 2014
Rhiannon K. Schilling; Petra Marschner; Yuri Shavrukov; Bettina Berger; Mark Tester; Stuart J. Roy; Darren Plett
Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H⁺-PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high-throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse-grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mM NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild-type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse- or field-grown plants. This study validates our greenhouse-based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.