Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwenda M Mayo is active.

Publication


Featured researches published by Gwenda M Mayo.


Plant Physiology | 2009

The Role of Plasma Membrane Intrinsic Protein Aquaporins in Water Transport through Roots: Diurnal and Drought Stress Responses Reveal Different Strategies between Isohydric and Anisohydric Cultivars of Grapevine

Rebecca K. Vandeleur; Gwenda M Mayo; Megan C. Shelden; Matthew Gilliham; Brent N. Kaiser; Stephen D. Tyerman

We report physiological and anatomical characteristics of water transport across roots grown in soil of two cultivars of grapevine (Vitis vinifera) differing in response to water stress (Grenache, isohydric; Chardonnay, anisohydric). Both cultivars have similar root hydraulic conductances (Lo; normalized to root dry weight) that change diurnally. There is a positive correlation between Lo and transpiration. Under water stress, both cultivars have reduced minimum daily Lo (predawn) attributed to the development of apoplastic barriers. Water-stressed and well-watered Chardonnay had the same diurnal change in amplitude of Lo, while water-stressed Grenache showed a reduction in daily amplitude compared with well-watered plants. Hydraulic conductivity of root cortex cells (Lpcell) doubles in Chardonnay but remains unchanged in Grenache. Of the two most highly expressed plasma membrane intrinsic protein (PIP) aquaporins in roots (VvPIP1;1 and VvPIP2;2), only VvPIP2;2 functions as a water channel in Xenopus laevis oocytes. VvPIP1;1 interacts with VvPIP2;2 to induce 3-fold higher water permeability. These two aquaporins are colocated in the root from in situ hybridization and immunolocalization of VvPIP1 and VvPIP2 subfamily members. They occur in root tip, exodermis, root cortex (detected up to 30 mm), and stele. VvPIP2;2 mRNA does not change diurnally or with water stress, in contrast to VvPIP1;1, in which expression reflects the differences in Lo and Lpcell between cultivars in their responses to water stress and rewatering. VvPIP1;1 may regulate water transport across roots such that transpirational demand is matched by root water transport capacity. This occurs on a diurnal basis and in response to water stress that corresponds to the difference in drought tolerance between the cultivars.


The Plant Cell | 2009

Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type-Specific Alteration of Na+ Transport in Arabidopsis

Inge Skrumsager Møller; Matthew Gilliham; Deepa Jha; Gwenda M Mayo; Stuart J. Roy; Juliet C. Coates; Jim Haseloff; Mark Tester

Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.


Science | 2007

Boron-Toxicity Tolerance in Barley Arising from Efflux Transporter Amplification

Tim Sutton; Ute Baumann; Julie Hayes; Nicholas C. Collins; Bu-Jun Shi; Thorsten Schnurbusch; Alison Hay; Gwenda M Mayo; Margaret Pallotta; Mark Tester; Peter Langridge

Both limiting and toxic soil concentrations of the essential micronutrient boron represent major limitations to crop production worldwide. We identified Bot1, a BOR1 ortholog, as the gene responsible for the superior boron-toxicity tolerance of the Algerian barley landrace Sahara 3771 (Sahara). Bot1 was located at the tolerance locus by high-resolution mapping. Compared to intolerant genotypes, Sahara contains about four times as many Bot1 gene copies, produces substantially more Bot1 transcript, and encodes a Bot1 protein with a higher capacity to provide tolerance in yeast. Bot1 transcript levels identified in barley tissues are consistent with a role in limiting the net entry of boron into the root and in the disposal of boron from leaves via hydathode guttation.


Science | 1972

Genes Conferring Specific Plant Disease Resistance

K. W. Shepherd; Gwenda M Mayo

Genes conferring host resistance to an obligate parasite, grouped together in complex loci provide opportunities to study their structure. By means of an appropriate operational definition of these genes, a modified cis-trans test was used to interpret the position effects of codominant genes mutually recombined within each of two complex loci of flax, with the use of a specially developed method of analysis among F2 segregants. The different behavior of genes in the M and L groups may reflect a difference in their structure sufficient to raise important implications in the theory of specific host-parasite interactions.


Plant Physiology | 2016

Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

Bo Li; Caitlin S. Byrt; Jiaen Qiu; Ute Baumann; Maria Hrmova; Aurelie Evrard; Alexander A. T. Johnson; Kenneth D. Birnbaum; Gwenda M Mayo; Deepa Jha; Sam W Henderson; Mark Tester; Matthew Gilliham; Stuart J. Roy

Identification and functional analysis of a gene encoding a Cl– transporter responsible for loading Cl– into root xylem. Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.


BMC Plant Biology | 2015

Powerful regulatory systems and post-transcriptional gene silencing resist increases in cellulose content in cell walls of barley

Hwei-Ting Tan; Neil J. Shirley; Rohan Singh; Marilyn Henderson; Kanwarpal S. Dhugga; Gwenda M Mayo; Geoffrey B. Fincher; Rachel A. Burton

BackgroundThe ability to increase cellulose content and improve the stem strength of cereals could have beneficial applications in stem lodging and producing crops with higher cellulose content for biofuel feedstocks. Here, such potential is explored in the commercially important crop barley through the manipulation of cellulose synthase genes (CesA).ResultsBarley plants transformed with primary cell wall (PCW) and secondary cell wall (SCW) barley cellulose synthase (HvCesA) cDNAs driven by the CaMV 35S promoter, were analysed for growth and morphology, transcript levels, cellulose content, stem strength, tissue morphology and crystalline cellulose distribution. Transcript levels of the PCW HvCesA transgenes were much lower than expected and silencing of both the endogenous CesA genes and introduced transgenes was often observed. These plants showed no aberrant phenotypes. Although attempts to over-express the SCW HvCesA genes also resulted in silencing of the transgenes and endogenous SCW HvCesA genes, aberrant phenotypes were sometimes observed. These included brittle nodes and, with the 35S:HvCesA4 construct, a more severe dwarfing phenotype, where xylem cells were irregular in shape and partially collapsed. Reductions in cellulose content were also observed in the dwarf plants and transmission electron microscopy showed a significant decrease in cell wall thickness. However, there were no increases in overall crystalline cellulose content or stem strength in the CesA over-expression transgenic plants, despite the use of a powerful constitutive promoter.ConclusionsThe results indicate that the cellulose biosynthetic pathway is tightly regulated, that individual CesA proteins may play different roles in the synthase complex, and that the sensitivity to CesA gene manipulation observed here suggests that in planta engineering of cellulose levels is likely to require more sophisticated strategies.


Plant Methods | 2014

Protocol: a fast and simple in situ PCR method for localising gene expression in plant tissue

Asmini Athman; Sandra K. Tanz; Vanessa Conn; Charlotte Jordans; Gwenda M Mayo; Weng W Ng; Rachel A. Burton; Simon J. Conn; Matthew Gilliham

BackgroundAn important step in characterising the function of a gene is identifying the cells in which it is expressed. Traditional methods to determine this include in situ hybridisation, gene promoter-reporter fusions or cell isolation/purification techniques followed by quantitative PCR. These methods, although frequently used, can have limitations including their time-consuming nature, limited specificity, reliance upon well-annotated promoters, high cost, and the need for specialized equipment. In situ PCR is a relatively simple and rapid method that involves the amplification of specific mRNA directly within plant tissue whilst incorporating labelled nucleotides that are subsequently detected by immunohistochemistry. Another notable advantage of this technique is that it can be used on plants that are not easily genetically transformed.ResultsAn optimised workflow for in-tube and on-slide in situ PCR is presented that has been evaluated using multiple plant species and tissue types. The protocol includes optimised methods for: (i) fixing, embedding, and sectioning of plant tissue; (ii) DNase treatment; (iii) in situ RT-PCR with the incorporation of DIG-labelled nucleotides; (iv) signal detection using colourimetric alkaline phosphatase substrates; and (v) mounting and microscopy. We also provide advice on troubleshooting and the limitations of using fluorescence as an alternative detection method. Using our protocol, reliable results can be obtained within two days from harvesting plant material. This method requires limited specialized equipment and can be adopted by any laboratory with a vibratome (vibrating blade microtome), a standard thermocycler, and a microscope. We show that the technique can be used to localise gene expression with cell-specific resolution.ConclusionsThe in situ PCR method presented here is highly sensitive and specific. It reliably identifies the cellular expression pattern of even highly homologous and low abundance transcripts within target tissues, and can be completed within two days of harvesting tissue. As such, it has considerable advantages over other methods, especially in terms of time and cost. We recommend its adoption as the standard laboratory technique of choice for demonstrating the cellular expression pattern of a gene of interest.


Frontiers in Plant Science | 2017

AtNPF2.5 Modulates Chloride (Cl−) Efflux from Roots of Arabidopsis thaliana

Bo Li; Jiaen Qiu; Maheswari Jayakannan; Bo Xu; Yuan Li; Gwenda M Mayo; Mark Tester; Matthew Gilliham; Stuart J. Roy

The accumulation of high concentrations of chloride (Cl−) in leaves can adversely affect plant growth. When comparing different varieties of the same Cl− sensitive plant species those that exclude relatively more Cl− from their shoots tend to perform better under saline conditions; however, the molecular mechanisms involved in maintaining low shoot Cl− remain largely undefined. Recently, it was shown that the NRT1/PTR Family 2.4 protein (NPF2.4) loads Cl− into the root xylem, which affects the accumulation of Cl− in Arabidopsis shoots. Here we characterize NPF2.5, which is the closest homolog to NPF2.4 sharing 83.2% identity at the amino acid level. NPF2.5 is predominantly expressed in root cortical cells and its transcription is induced by salt. Functional characterisation of NPF2.5 via its heterologous expression in yeast (Saccharomyces cerevisiae) and Xenopus laevis oocytes indicated that NPF2.5 is likely to encode a Cl− permeable transporter. Arabidopsis npf2.5 T-DNA knockout mutant plants exhibited a significantly lower Cl− efflux from roots, and a greater Cl− accumulation in shoots compared to salt-treated Col-0 wild-type plants. At the same time, NO3− content in the shoot remained unaffected. Accumulation of Cl− in the shoot increased following (1) amiRNA-induced knockdown of NPF2.5 transcript abundance in the root, and (2) constitutive over-expression of NPF2.5. We suggest that both these findings are consistent with a role for NPF2.5 in modulating Cl− transport. Based on these results, we propose that NPF2.5 functions as a pathway for Cl− efflux from the root, contributing to exclusion of Cl− from the shoot of Arabidopsis.


Methods of Molecular Biology | 2012

Transcriptomics on small samples.

Stuart J. Roy; Simon J. Conn; Gwenda M Mayo; Asmini Athman; Matthew Gilliham

Interrogating the cell-specific transcriptome forms an important component of understanding the role that specific cells play in assisting a plant to overcome abiotic stress. Among the challenges arising when extracting RNA from individual plant cells are: the isolation of pure cell populations; the small yield of material when isolating specific cell types, and ensuring an accurate representation of the transcriptome from each cell type after amplification of RNA. Here we describe two approaches for isolating RNA from specific cell types-single cell sampling and analysis (SiCSA) and laser capture microdissection. Isolated RNA can then be directly sampled qualitatively using reverse transcription PCR (RT-PCR) or amplified for profiling -multiple specific genes using quantitative RT-PCR and genome-wide transcript analyses.


BMC Genomics | 2009

Comparative transcriptomics in the Triticeae

Andreas W. Schreiber; Tim Sutton; Rico A. Caldo; Elena Kalashyan; Ben Lovell; Gwenda M Mayo; Gary J. Muehlbauer; Arnis Druka; Robbie Waugh; Roger P. Wise; Peter Langridge; Ute Baumann

Collaboration


Dive into the Gwenda M Mayo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Tester

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Megan C. Shelden

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ute Baumann

Australian Centre for Plant Functional Genomics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Li

Australian Centre for Plant Functional Genomics

View shared research outputs
Researchain Logo
Decentralizing Knowledge