Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart Johnson is active.

Publication


Featured researches published by Stuart Johnson.


Infection Control and Hospital Epidemiology | 2010

Clinical Practice Guidelines for Clostridium difficile Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA)

Stuart H. Cohen; Dale N. Gerding; Stuart Johnson; Ciaran P. Kelly; Vivian G. Loo; L. Clifford McDonald; Jacques Pépin; Mark H. Wilcox

Since publication of the Society for Healthcare Epidemiology of America position paper on Clostridium difficile infection in 1995, significant changes have occurred in the epidemiology and treatment of this infection. C. difficile remains the most important cause of healthcare-associated diarrhea and is increasingly important as a community pathogen. A more virulent strain of C. difficile has been identified and has been responsible for more-severe cases of disease worldwide. Data reporting the decreased effectiveness of metronidazole in the treatment of severe disease have been published. Despite the increasing quantity of data available, areas of controversy still exist. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, and infection control and environmental management.


Infection Control and Hospital Epidemiology | 1995

CLOSTRIDIUM DIFFICILE-ASSOCIATED DIARRHEA AND COLITIS

Dale N. Gerding; Stuart Johnson; Lance R. Peterson; Maury Ellis Mulligan; Joseph Silva

OBJECTIVES To review and summarize the status of diagnosis, epidemiology, infection control, and treatment of Clostridium difficile-associated disease (CDAD). DIAGNOSIS A case definition of CDAD should include the presence of symptoms (usually diarrhea) and at least one of the following positive tests: endoscopy revealing pseudomembranes, stool cytotoxicity test for toxin B, stool enzyme immunoassay for toxin A or B, or stool culture for C difficile (preferably with confirmation of organism toxicity if a direct stool toxin test is negative or not done). Testing of asymptomatic patients, including those who are asymptomatic after treatment, is not recommended other than for epidemiologic purposes. Lower gastrointestinal endoscopy is the only diagnostic test for pseudomembranous colitis, but it is expensive, invasive, and insensitive (51% to 55%) for the diagnosis of CDAD. Stool culture is the most sensitive laboratory test currently in clinical use, but it is not as specific as the cell cytotoxicity assay. EPIDEMIOLOGY C difficile is the most frequently identified cause of nosocomial diarrhea. The majority of C difficile infections are acquired nosocomially, and most patients remain asymptomatic following acquisition. Antimicrobial exposure is the greatest risk factor for patients, especially clindamycin, cephalosporins, and penicillins, although virtually every antimicrobial has been implicated. Cases of CDAD unassociated with prior antimicrobial or antineoplastic use are very rare. Hands of personnel, as well as a variety of environmental sites within institutions, have been found to be contaminated with C difficile, which can persist as spores for many months. Contaminated commodes, bathing tubs, and electronic thermometers have been implicated as sources of C difficile. Symptomatic and asymptomatic infected patients are the major reservoirs and sources for environmental contamination. Both genotypic and phenotypic typing systems for C difficile are available and have enhanced epidemiologic investigation greatly. INFECTION CONTROL Successful infection control measures designed to prevent horizontal transmission include the use of gloves in handling body substances and replacement of electronic thermometers with disposable devices. Isolation, cohorting, handwashing, environmental disinfection, and treatment of asymptomatic carriers are recommended practices for which convincing data of efficacy are not available. The most successful control measure directed at reduction in symptomatic disease has been antimicrobial restriction. TREATMENT Treatment of symptomatic (but not asymptomatic) patients with metronidazole or vancomycin for 10 days is effective; metronidazole may be preferred to reduce risk of vancomycin resistance among other organisms in hospitals. Recurrence of symptoms occurs in 7% to 20% of patients and is due to both relapse and reinfection. Over 90% of first recurrences can be treated successfully in the same manner as initial cases. Combination treatment with vancomycin plus rifampin or the addition orally of the yeast Saccharomyces boulardii to vancomycin or metronidazole treatment has been shown to prevent subsequent diarrhea in patients with recurrent disease.


Nature | 2009

Toxin B is essential for virulence of Clostridium difficile

Dena Lyras; Jennifer R. O’Connor; Pauline M. Howarth; Susan P. Sambol; Glen P. Carter; Tongted Phumoonna; Rachael Poon; Vicki Adams; Gayatri Vedantam; Stuart Johnson; Dale N. Gerding; Julian I. Rood

Clostridium difficile is the leading cause of infectious diarrhoea in hospitals worldwide, because of its virulence, spore-forming ability and persistence. C. difficile-associated diseases are induced by antibiotic treatment or disruption of the normal gastrointestinal flora. Recently, morbidity and mortality resulting from C. difficile-associated diseases have increased significantly due to changes in the virulence of the causative strains and antibiotic usage patterns. Since 2002, epidemic toxinotype III NAP1/027 strains, which produce high levels of the major virulence factors, toxin A and toxin B, have emerged. These toxins have 63% amino acid sequence similarity and are members of the large clostridial glucosylating toxin family, which are monoglucosyltransferases that are pro-inflammatory, cytotoxic and enterotoxic in the human colon. Inside host cells, both toxins catalyse the transfer of glucose onto the Rho family of GTPases, leading to cell death. However, the role of these toxins in the context of a C. difficile infection is unknown. Here we describe the construction of isogenic tcdA and tcdB (encoding toxin A and B, respectively) mutants of a virulent C. difficile strain and their use in the hamster disease model to show that toxin B is a key virulence determinant. Previous studies showed that purified toxin A alone can induce most of the pathology observed after infection of hamsters with C. difficile and that toxin B is not toxic in animals unless it is co-administered with toxin A, suggesting that the toxins act synergistically. Our work provides evidence that toxin B, not toxin A, is essential for virulence. Furthermore, it is clear that the importance of these toxins in the context of infection cannot be predicted exclusively from studies using purified toxins, reinforcing the importance of using the natural infection process to dissect the role of toxins in disease.


Clinical Infectious Diseases | 1998

Clostridium difficile-Associated Diarrhea

Stuart Johnson; Dale N. Gerding

Clostridium difficile is well recognized as the major, if not the only, important cause of infectious diarrhea that develops in patients after hospitalization in the United States, and likely, in developed countries around the world [1]. The temporal relation between the onset of C. difficile-associated diarrhea (CDAD) and prior or concurrent antimicrobial therapy has caused confusion regarding the pathogenesis of this disease and has led to consideration of this infection as distinct from


The New England Journal of Medicine | 1999

Epidemics of Diarrhea Caused by a Clindamycin-Resistant Strain of Clostridium difficile in Four Hospitals

Stuart Johnson; Matthew H. Samore; Kylie A. Farrow; George Killgore; Fred C. Tenover; Dena Lyras; Julian I. Rood; Paola C. DeGirolami; Aldona L. Baltch; Mary Ellen Rafferty; Suzanne M. Pear; Dale N. Gerding

BACKGROUND Large outbreaks of diarrhea caused by a newly recognized strain of Clostridium difficile occurred in four hospitals located in different parts of the United States between 1989 and 1992. Since frequent use of clindamycin was associated with the outbreak in one of the hospitals, we examined the resistance genes of the epidemic-strain isolates and studied the role of clindamycin use in these outbreaks. METHODS Case-control studies were performed at three of the four hospitals to assess the relation of the use of clindamycin to C. difficile-associated diarrhea. All isolates of the epidemic strain and representative isolates of other strains identified during each outbreak were tested for susceptibility to clindamycin. Chromosomal DNA from these representative isolates was also analyzed by dot blot hybridization and amplification with the polymerase chain reaction (PCR) with the use of probes and primers from a previously described determinant of erythromycin resistance - the erythromycin ribosomal methylase B (ermB) gene - found in C. perfringens and C. difficile. RESULTS In a stratified analysis of the case-control studies with pooling of the results according to the Mantel-Haenszel method, we found that the use of clindamycin was significantly increased among patients with diarrhea due to the epidemic strain of C. difficile, as compared with patients whose diarrhea was due to nonepidemic strains (pooled odds ratio, 4.35; 95 percent confidence interval, 2.02 to 9.38; P<0.001). Exposure to other types of antibiotics or hospitalization in a surgical ward was not significantly associated with the risk of C. difficile-associated diarrhea due to the epidemic strain. All epidemic-strain isolates were highly resistant to clindamycin (minimal inhibitory concentration, >256 microg per milliliter). DNA hybridization and PCR analysis showed that all these isolates had an ermB gene, which encodes a 23S ribosomal RNA methylase that mediates resistance to macrolide, lincosamide, and streptogramin antibiotics. Only 15 percent of the nonepidemic strains were resistant to clindamycin. CONCLUSIONS A strain of C. difficile that is highly resistant to clindamycin was responsible for large outbreaks of diarrhea in four hospitals in different states. The use of clindamycin is a specific risk factor for diarrhea due to this strain. Resistance to clindamycin further increases the risk of C. difficile-associated diarrhea, an established complication of antimicrobial use.


Journal of Clinical Microbiology | 2008

Comparison of Seven Techniques for Typing International Epidemic Strains of Clostridium difficile: Restriction Endonuclease Analysis, Pulsed-Field Gel Electrophoresis, PCR-Ribotyping, Multilocus Sequence Typing, Multilocus Variable-Number Tandem-Repeat Analysis, Amplified Fragment Length Polymorphism, and Surface Layer Protein A Gene Sequence Typing

George Killgore; Angela Thompson; Stuart Johnson; Jon S. Brazier; Ed J. Kuijper; Jacques Pépin; Eric Frost; Paul H. M. Savelkoul; Brad Nicholson; Renate J. van den Berg; Haru Kato; Susan P. Sambol; Walter Zukowski; Christopher W. Woods; Brandi Limbago; Dale N. Gerding; L. Clifford McDonald

ABSTRACT Using 42 isolates contributed by laboratories in Canada, The Netherlands, the United Kingdom, and the United States, we compared the results of analyses done with seven Clostridium difficile typing techniques: multilocus variable-number tandem-repeat analysis (MLVA), amplified fragment length polymorphism (AFLP), surface layer protein A gene sequence typing (slpAST), PCR-ribotyping, restriction endonuclease analysis (REA), multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). We assessed the discriminating ability and typeability of each technique as well as the agreement among techniques in grouping isolates by allele profile A (AP-A) through AP-F, which are defined by toxinotype, the presence of the binary toxin gene, and deletion in the tcdC gene. We found that all isolates were typeable by all techniques and that discrimination index scores for the techniques tested ranged from 0.964 to 0.631 in the following order: MLVA, REA, PFGE, slpAST, PCR-ribotyping, MLST, and AFLP. All the techniques were able to distinguish the current epidemic strain of C. difficile (BI/027/NAP1) from other strains. All of the techniques showed multiple types for AP-A (toxinotype 0, binary toxin negative, and no tcdC gene deletion). REA, slpAST, MLST, and PCR-ribotyping all included AP-B (toxinotype III, binary toxin positive, and an 18-bp deletion in tcdC) in a single group that excluded other APs. PFGE, AFLP, and MLVA grouped two, one, and two different non-AP-B isolates, respectively, with their AP-B isolates. All techniques appear to be capable of detecting outbreak strains, but only REA and MLVA showed sufficient discrimination to distinguish strains from different outbreaks.


Clinical Infectious Diseases | 2007

Interruption of Recurrent Clostridium difficile-Associated Diarrhea Episodes by Serial Therapy with Vancomycin and Rifaximin

Stuart Johnson; Christopher Schriever; Minerva A. Galang; Ciaran P. Kelly; Dale N. Gerding

Eight women who each experienced 4-8 episodes of Clostridium difficile-associated diarrhea were given a 2-week course of rifaximin therapy when they were asymptomatic, immediately after completing their last course of vancomycin therapy. Seven of the 8 patients experienced no further diarrhea recurrence. The patient who had a recurrence responded to a second course of rifaximin therapy, but rifaximin-resistant C. difficile was recovered after treatment. A controlled trial for treating recurrent Clostridium difficile-associated diarrhea appears to be warranted.


Gastroenterology | 2009

Clostridium difficile infection caused by the epidemic BI/NAP1/027 strain.

Jennifer R. O'Connor; Stuart Johnson; Dale N. Gerding

Rates and severity of Clostridium difficile infection (CDI) in hospitals in North America and Europe have increased since 2000 and correlate with dissemination of an epidemic strain characterized by higher than usual toxin A and B production, the presence of a third toxin, binary toxin, and high-level resistance to fluoroquinolone antibiotics. The strain, which is restriction endonuclease analysis group BI, pulse-field gel electrophoresis type NAP1, and polymerase chain reaction ribotype 027, is designated BI/NAP1/027. How this strain has become so widely distributed geographically and produces such severe CDI is the subject of active investigation. The deletion at position 117 of the tcdC gene, a repressor of toxin A and B production, is one possible contributor to increased levels of the toxins. The role of binary toxin is unknown. Recent isolates of BI/NAP1/027 were found to be resistant to fluoroquinolones, which is likely to contribute to the dissemination of this strain. Other virulence factors such as increased sporulation and surface layer protein adherence are also under investigation. Infections caused by this organism are particularly frequent among elderly hospitalized patients, in whom the attributable 30-day mortality is greater than 5%. Major risk factors for BI/NAP1/027 infection include advanced age, hospitalization, and exposure to specific antimicrobials, especially fluoroquinolones and cephalosporins. When CDI is severe, vancomycin treatment is more effective than metronidazole; for mild disease either agent can be used. Control of hospital outbreaks caused by BI/NAP1/027 is difficult but possible through a combination of barrier precautions, environmental cleaning, and antimicrobial stewardship.


Antimicrobial Agents and Chemotherapy | 2007

In vitro activities of 15 antimicrobial agents against 110 toxigenic clostridium difficile clinical isolates collected from 1983 to 2004.

David W. Hecht; Minerva A. Galang; Susan P. Sambol; James R. Osmolski; Stuart Johnson; Dale N. Gerding

ABSTRACT The incidence and severity of Clostridium difficile-associated disease (CDAD) is increasing, and standard treatment is not always effective. Therefore, more-effective antimicrobial agents and treatment strategies are needed. We used the agar dilution method to determine the in vitro susceptibility of the following antimicrobials against 110 toxigenic clinical isolates of C. difficile from 1983 to 2004, primarily from the United States: doripenem, meropenem, gatifloxacin, levofloxacin, moxifloxacin, OPT-80, ramoplanin, rifalazil, rifaximin, nitazoxanide, tizoxanide, tigecycline, vancomycin, tinidazole, and metronidazole. Included among the isolates tested were six strains of the toxinotype III, NAP1/BI/027 group implicated in recent U.S., Canadian, and European outbreaks. The most active agents in vitro were rifaximin, rifalazil, tizoxanide, nitazoxanide, and OPT-80 with MICs at which 50% of the isolates are inhibited (MIC50) and MIC90 values of 0.0075 and 0.015 μg/ml, 0.0075 and 0.03 μg/ml, 0.06 and 0.125 μg/ml, 0.06 and 0.125 μg/ml, 0.125 and 0.125 μg/ml, respectively. However, for three isolates the rifalazil and rifaximin MICs were very high (MIC of >256 μg/ml). Ramoplanin, vancomycin, doripenem, and meropenem were also very active in vitro with narrow MIC50 and MIC90 ranges. None of the isolates were resistant to metronidazole, the only agent for which there are breakpoints, with tinidazole showing nearly identical results. These in vitro susceptibility results are encouraging and support continued evaluation of selected antimicrobials in clinical trials of treatment for CDAD.


Emerging Infectious Diseases | 2008

Toxinotype V Clostridium difficile in Humans and Food Animals

Michael A. Jhung; Angela Thompson; George Killgore; Walter Zukowski; Glenn Songer; Michael Warny; Stuart Johnson; Dale N. Gerding; L. Clifford McDonald; Brandi Limbago

Such strains are uncommon causes of severe human disease but may be increasing in incidence.

Collaboration


Dive into the Stuart Johnson's collaboration.

Top Co-Authors

Avatar

Dale N. Gerding

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Susan P. Sambol

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Lance R. Peterson

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Killgore

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Jorge P. Parada

Loyola University Medical Center

View shared research outputs
Top Co-Authors

Avatar

L. Clifford McDonald

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Hecht

Loyola University Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge