Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dale N. Gerding is active.

Publication


Featured researches published by Dale N. Gerding.


Infection Control and Hospital Epidemiology | 2010

Clinical Practice Guidelines for Clostridium difficile Infection in Adults: 2010 Update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA)

Stuart H. Cohen; Dale N. Gerding; Stuart Johnson; Ciaran P. Kelly; Vivian G. Loo; L. Clifford McDonald; Jacques Pépin; Mark H. Wilcox

Since publication of the Society for Healthcare Epidemiology of America position paper on Clostridium difficile infection in 1995, significant changes have occurred in the epidemiology and treatment of this infection. C. difficile remains the most important cause of healthcare-associated diarrhea and is increasingly important as a community pathogen. A more virulent strain of C. difficile has been identified and has been responsible for more-severe cases of disease worldwide. Data reporting the decreased effectiveness of metronidazole in the treatment of severe disease have been published. Despite the increasing quantity of data available, areas of controversy still exist. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, and infection control and environmental management.


Clinical Infectious Diseases | 2007

Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship

Timothy H. Dellit; Robert C. Owens; John E. McGowan; Dale N. Gerding; Robert A. Weinstein; John P. Burke; W. Charles Huskins; David L. Paterson; Neil O. Fishman; Christopher F. Carpenter; Patrick J. Brennan; Marianne Billeter; Thomas M. Hooton

Timothy H. Dellit, Robert C. Owens, John E. McGowan, Jr., Dale N. Gerding, Robert A. Weinstein, John P. Burke, W. Charles Huskins, David L. Paterson, Neil O. Fishman, Christopher F. Carpenter, P. J. Brennan, Marianne Billeter, and Thomas M. Hooton Harborview Medical Center and the University of Washington, Seattle; Maine Medical Center, Portland; Emory University, Atlanta, Georgia; Hines Veterans Affairs Hospital and Loyola University Stritch School of Medicine, Hines, and Stroger (Cook County) Hospital and Rush University Medical Center, Chicago, Illinois; University of Utah, Salt Lake City; Mayo Clinic College of Medicine, Rochester, Minnesota; University of Pittsburgh Medical Center, Pittsburgh, and University of Pennsylvania, Philadelphia, Pennsylvania; William Beaumont Hospital, Royal Oak, Michigan; Ochsner Health System, New Orleans, Louisiana; and University of Miami, Miami, Florida


Nature Reviews Microbiology | 2009

Clostridium difficile infection: new developments in epidemiology and pathogenesis

Maja Rupnik; Mark H. Wilcox; Dale N. Gerding

Clostridium difficile is now considered to be one of the most important causes of health care-associated infections. C. difficile infections are also emerging in the community and in animals used for food, and are no longer viewed simply as unpleasant complications that follow antibiotic therapy. Since 2001, the prevalence and severity of C. difficile infection has increased significantly, which has led to increased research interest and the discovery of new virulence factors, and has expanded and focused the development of new treatment and prevention regimens. This Review summarizes the recent epidemiological changes in C. difficile infection, our current knowledge of C. difficile virulence factors and the clinical outcomes of C. difficile infection.


The New England Journal of Medicine | 2015

Burden of Clostridium difficile Infection in the United States

Fernanda C. Lessa; Yi Mu; Wendy Bamberg; Zintars G. Beldavs; Ghinwa Dumyati; John R. Dunn; Monica M. Farley; Stacy M. Holzbauer; James Meek; Erin C. Phipps; Lucy E. Wilson; Lisa G. Winston; Jessica Cohen; Brandi Limbago; Scott K. Fridkin; Dale N. Gerding; L. Clifford McDonald

BACKGROUND The magnitude and scope of Clostridium difficile infection in the United States continue to evolve. METHODS In 2011, we performed active population- and laboratory-based surveillance across 10 geographic areas in the United States to identify cases of C. difficile infection (stool specimens positive for C. difficile on either toxin or molecular assay in residents ≥ 1 year of age). Cases were classified as community-associated or health care-associated. In a sample of cases of C. difficile infection, specimens were cultured and isolates underwent molecular typing. We used regression models to calculate estimates of national incidence and total number of infections, first recurrences, and deaths within 30 days after the diagnosis of C. difficile infection. RESULTS A total of 15,461 cases of C. difficile infection were identified in the 10 geographic areas; 65.8% were health care-associated, but only 24.2% had onset during hospitalization. After adjustment for predictors of disease incidence, the estimated number of incident C. difficile infections in the United States was 453,000 (95% confidence interval [CI], 397,100 to 508,500). The incidence was estimated to be higher among females (rate ratio, 1.26; 95% CI, 1.25 to 1.27), whites (rate ratio, 1.72; 95% CI, 1.56 to 2.0), and persons 65 years of age or older (rate ratio, 8.65; 95% CI, 8.16 to 9.31). The estimated number of first recurrences of C. difficile infection was 83,000 (95% CI, 57,000 to 108,900), and the estimated number of deaths was 29,300 (95% CI, 16,500 to 42,100). The North American pulsed-field gel electrophoresis type 1 (NAP1) strain was more prevalent among health care-associated infections than among community-associated infections (30.7% vs. 18.8%, P<0.001). CONCLUSIONS C. difficile was responsible for almost half a million infections and was associated with approximately 29,000 deaths in 2011. (Funded by the Centers for Disease Control and Prevention.).


Clinical Infectious Diseases | 1997

Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: Guidelines for the Prevention of Antimicrobial Resistance in Hospitals

David M. Shlaes; Dale N. Gerding; Joseph F. John; William A. Craig; Donald L. Bornstein; Robert A. Duncan; Mark R. Eckman; William E. Farrer; William H. Greene; Victor Lorian; Stuart B. Levy; John E. McGowan; Sindy M. Paul; Joel Ruskin; Fred C. Tenover; Chatrchai Watanakunakorn

Antimicrobial resistance results in increased morbidity, mortality, and costs of health care. Prevention of the emergence of resistance and the dissemination of resistant microorganisms will reduce these adverse effects and their attendant costs. Appropriate antimicrobial stewardship that includes optimal selection, dose, and duration of treatment, as well as control of antibiotic use, will prevent or slow the emergence of resistance among microorganisms. A comprehensively applied infection control program will interdict the dissemination of resistant strains.


The New England Journal of Medicine | 2010

Treatment with Monoclonal Antibodies against Clostridium difficile Toxins

Israel Lowy; Deborah C. Molrine; Brett A. Leav; Barbara M. Blair; Roger Baxter; Dale N. Gerding; Geoffrey Nichol; William D. Thomas; Mark Leney; Susan E. Sloan; Catherine A. Hay; Donna M. Ambrosino

BACKGROUND New therapies are needed to manage the increasing incidence, severity, and high rate of recurrence of Clostridium difficile infection. METHODS We performed a randomized, double-blind, placebo-controlled study of two neutralizing, fully human monoclonal antibodies against C. difficile toxins A (CDA1) and B (CDB1). The antibodies were administered together as a single infusion, each at a dose of 10 mg per kilogram of body weight, in patients with symptomatic C. difficile infection who were receiving either metronidazole or vancomycin. The primary outcome was laboratory-documented recurrence of infection during the 84 days after the administration of monoclonal antibodies or placebo. RESULTS Among the 200 patients who were enrolled (101 in the antibody group and 99 in the placebo group), the rate of recurrence of C. difficile infection was lower among patients treated with monoclonal antibodies (7% vs. 25%; 95% confidence interval, 7 to 29; P<0.001). The recurrence rates among patients with the epidemic BI/NAP1/027 strain were 8% for the antibody group and 32% for the placebo group (P=0.06); among patients with more than one previous episode of C. difficile infection, recurrence rates were 7% and 38%, respectively (P=0.006). The mean duration of the initial hospitalization for inpatients did not differ significantly between the antibody and placebo groups (9.5 and 9.4 days, respectively). At least one serious adverse event was reported by 18 patients in the antibody group and by 28 patients in the placebo group (P=0.09). CONCLUSIONS The addition of monoclonal antibodies against C. difficile toxins to antibiotic agents significantly reduced the recurrence of C. difficile infection. (ClinicalTrials.gov number, NCT00350298.)


Infection Control and Hospital Epidemiology | 1995

CLOSTRIDIUM DIFFICILE-ASSOCIATED DIARRHEA AND COLITIS

Dale N. Gerding; Stuart Johnson; Lance R. Peterson; Maury Ellis Mulligan; Joseph Silva

OBJECTIVES To review and summarize the status of diagnosis, epidemiology, infection control, and treatment of Clostridium difficile-associated disease (CDAD). DIAGNOSIS A case definition of CDAD should include the presence of symptoms (usually diarrhea) and at least one of the following positive tests: endoscopy revealing pseudomembranes, stool cytotoxicity test for toxin B, stool enzyme immunoassay for toxin A or B, or stool culture for C difficile (preferably with confirmation of organism toxicity if a direct stool toxin test is negative or not done). Testing of asymptomatic patients, including those who are asymptomatic after treatment, is not recommended other than for epidemiologic purposes. Lower gastrointestinal endoscopy is the only diagnostic test for pseudomembranous colitis, but it is expensive, invasive, and insensitive (51% to 55%) for the diagnosis of CDAD. Stool culture is the most sensitive laboratory test currently in clinical use, but it is not as specific as the cell cytotoxicity assay. EPIDEMIOLOGY C difficile is the most frequently identified cause of nosocomial diarrhea. The majority of C difficile infections are acquired nosocomially, and most patients remain asymptomatic following acquisition. Antimicrobial exposure is the greatest risk factor for patients, especially clindamycin, cephalosporins, and penicillins, although virtually every antimicrobial has been implicated. Cases of CDAD unassociated with prior antimicrobial or antineoplastic use are very rare. Hands of personnel, as well as a variety of environmental sites within institutions, have been found to be contaminated with C difficile, which can persist as spores for many months. Contaminated commodes, bathing tubs, and electronic thermometers have been implicated as sources of C difficile. Symptomatic and asymptomatic infected patients are the major reservoirs and sources for environmental contamination. Both genotypic and phenotypic typing systems for C difficile are available and have enhanced epidemiologic investigation greatly. INFECTION CONTROL Successful infection control measures designed to prevent horizontal transmission include the use of gloves in handling body substances and replacement of electronic thermometers with disposable devices. Isolation, cohorting, handwashing, environmental disinfection, and treatment of asymptomatic carriers are recommended practices for which convincing data of efficacy are not available. The most successful control measure directed at reduction in symptomatic disease has been antimicrobial restriction. TREATMENT Treatment of symptomatic (but not asymptomatic) patients with metronidazole or vancomycin for 10 days is effective; metronidazole may be preferred to reduce risk of vancomycin resistance among other organisms in hospitals. Recurrence of symptoms occurs in 7% to 20% of patients and is due to both relapse and reinfection. Over 90% of first recurrences can be treated successfully in the same manner as initial cases. Combination treatment with vancomycin plus rifampin or the addition orally of the yeast Saccharomyces boulardii to vancomycin or metronidazole treatment has been shown to prevent subsequent diarrhea in patients with recurrent disease.


Nature | 2009

Toxin B is essential for virulence of Clostridium difficile

Dena Lyras; Jennifer R. O’Connor; Pauline M. Howarth; Susan P. Sambol; Glen P. Carter; Tongted Phumoonna; Rachael Poon; Vicki Adams; Gayatri Vedantam; Stuart Johnson; Dale N. Gerding; Julian I. Rood

Clostridium difficile is the leading cause of infectious diarrhoea in hospitals worldwide, because of its virulence, spore-forming ability and persistence. C. difficile-associated diseases are induced by antibiotic treatment or disruption of the normal gastrointestinal flora. Recently, morbidity and mortality resulting from C. difficile-associated diseases have increased significantly due to changes in the virulence of the causative strains and antibiotic usage patterns. Since 2002, epidemic toxinotype III NAP1/027 strains, which produce high levels of the major virulence factors, toxin A and toxin B, have emerged. These toxins have 63% amino acid sequence similarity and are members of the large clostridial glucosylating toxin family, which are monoglucosyltransferases that are pro-inflammatory, cytotoxic and enterotoxic in the human colon. Inside host cells, both toxins catalyse the transfer of glucose onto the Rho family of GTPases, leading to cell death. However, the role of these toxins in the context of a C. difficile infection is unknown. Here we describe the construction of isogenic tcdA and tcdB (encoding toxin A and B, respectively) mutants of a virulent C. difficile strain and their use in the hamster disease model to show that toxin B is a key virulence determinant. Previous studies showed that purified toxin A alone can induce most of the pathology observed after infection of hamsters with C. difficile and that toxin B is not toxic in animals unless it is co-administered with toxin A, suggesting that the toxins act synergistically. Our work provides evidence that toxin B, not toxin A, is essential for virulence. Furthermore, it is clear that the importance of these toxins in the context of infection cannot be predicted exclusively from studies using purified toxins, reinforcing the importance of using the natural infection process to dissect the role of toxins in disease.


Infection Control and Hospital Epidemiology | 2008

Strategies to prevent surgical site infections in acute care hospitals.

Deverick J. Anderson; Keith S. Kaye; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Michael Klompas; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert R. Wise; Deborah S. Yokoe

Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals to implement and prioritize their surgical site infection (SSI) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.1. Burden of SSIs as complications in acute care facilities.a. SSIs occur in 2%-5% of patients undergoing inpatient surgery in the United States.b. Approximately 500,000 SSIs occur each year.2. Outcomes associated with SSIa. Each SSI is associated with approximately 7-10 additional postoperative hospital days.b. Patients with an SSI have a 2-11 times higher risk of death, compared with operative patients without an SSI.i. Seventy-seven percent of deaths among patients with SSI are direcdy attributable to SSI.c. Attributable costs of SSI vary, depending on the type of operative procedure and the type of infecting pathogen; published estimates range from


Clinical Infectious Diseases | 1998

Clostridium difficile-Associated Diarrhea

Stuart Johnson; Dale N. Gerding

3,000 to

Collaboration


Dive into the Dale N. Gerding's collaboration.

Top Co-Authors

Avatar

Lance R. Peterson

NorthShore University HealthSystem

View shared research outputs
Top Co-Authors

Avatar

Stuart Johnson

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Susan P. Sambol

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik R. Dubberke

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

L. Clifford McDonald

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Carol J. Shanholtzer

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Ciaran P. Kelly

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge