Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart R. Stock is active.

Publication


Featured researches published by Stuart R. Stock.


Circulation | 2003

Human Aortic Valve Calcification Is Associated With an Osteoblast Phenotype

Nalini M. Rajamannan; Malayannan Subramaniam; David J. Rickard; Stuart R. Stock; Janis L. Donovan; Margaret J. Springett; Thomas A. Orszulak; David A. Fullerton; Abdul J. Tajik; Robert O. Bonow; Thomas C. Spelsberg

Background—Calcific aortic stenosis is the third most common cardiovascular disease in the United States. We hypothesized that the mechanism for aortic valve calcification is similar to skeletal bone formation and that this process is mediated by an osteoblast-like phenotype. Methods and Results—To test this hypothesis, we examined calcified human aortic valves replaced at surgery (n=22) and normal human valves (n=20) removed at time of cardiac transplantation. Contact microradiography and micro-computerized tomography were used to assess the 2-dimensional and 3-dimensional extent of mineralization. Mineralization borders were identified with von Kossa and Goldner’s stains. Electron microscopy and energy-dispersive spectroscopy were performed for identification of bone ultrastructure and CaPO4 composition. To analyze for the osteoblast and bone markers, reverse transcriptase–polymerase chain reaction was performed on calcified versus normal human valves for osteopontin, bone sialoprotein, osteocalcin, alkaline phosphatase, and the osteoblast-specific transcription factor Cbfa1. Microradiography and micro-computerized tomography confirmed the presence of calcification in the valve. Special stains for hydroxyapatite and CaPO4 were positive in calcification margins. Electron microscopy identified mineralization, whereas energy-dispersive spectroscopy confirmed the presence of elemental CaPO4. Reverse transcriptase–polymerase chain reaction revealed increased mRNA levels of osteopontin, bone sialoprotein, osteocalcin, and Cbfa1 in the calcified valves. There was no change in alkaline phosphatase mRNA level but an increase in the protein expression in the diseased valves. Conclusions—These findings support the concept that aortic valve calcification is not a random degenerative process but an active regulated process associated with an osteoblast-like phenotype.


Circulation | 2005

Atorvastatin Inhibits Hypercholesterolemia-Induced Calcification in the Aortic Valves via the Lrp5 Receptor Pathway

Nalini M. Rajamannan; Malayannan Subramaniam; Frank Caira; Stuart R. Stock; Thomas C. Spelsberg

Background—Calcific aortic valve disease is the most common indication for surgical valve replacement in the United States. The cellular mechanisms of valve calcification are not well understood. We have previously shown that cellular proliferation and osteoblastogenesis are important in the development of valvular heart disease. Lrp5, a known low-density receptor-related protein, plays an essential role in cellular proliferation and osteoblastogenesis via the &bgr;-catenin signaling pathway. We hypothesize that Lrp5 also plays a role in aortic valve (AV) calcification in experimental hypercholesterolemia. Methods and Results—We examined the effects of cholesterol and atorvastatin in Watanabe rabbits (n=54). Group I (n=18) received a normal diet, group II (n=18) a 0.25% cholesterol diet, and group III (n=18) a 0.25% (w/w) cholesterol diet with atorvastatin for the development of calcification. The AVs were examined for cellular proliferation, Lrp5/&bgr;-catenin, and bone matrix markers. Bone formation was assessed by micro-computed tomography, calcein injection, and osteopontin expression. Low-density lipoprotein with and without atorvastatin was also tested in AV myofibroblasts for cellular proliferation and regulation of the Lrp5/&bgr;-catenin pathway. Our results demonstrate that the cholesterol diet induced complex bone formations in the calcified AVs with an increase in the Lrp5 receptors, osteopontin, and p42/44 expression. Atorvastatin reduced bone formation, cellular proliferation, and Lrp5/&bgr;-catenin protein levels in the AVs. In vitro analysis confirmed the Lrp5/&bgr;-catenin expression in myofibroblast cell proliferation. Conclusion—Hypercholesterolemic AV calcification is attenuated by atorvastatin and is mediated in part by the Lrp5/&bgr;-catenin pathway. This developmental pathway may be important in the signaling pathway of this disease.


Biomaterials | 2010

Bone Regeneration Mediated by Biomimetic Mineralization of a Nanofiber Matrix

Alvaro Mata; Yanbiao Geng; Karl Henrikson; Conrado Aparicio; Stuart R. Stock; Robert L. Satcher; Samuel I. Stupp

Rapid bone regeneration within a three-dimensional defect without the use of bone grafts, exogenous growth factors, or cells remains a major challenge. We report here on the use of self-assembling peptide nanostructured gels to promote bone regeneration that have the capacity to mineralize in biomimetic fashion. The main molecular design was the use of phosphoserine residues in the sequence of a peptide amphiphile known to nucleate hydroxyapatite crystals on the surfaces of nanofibers. We tested the system in a rat femoral critical-size defect by placing pre-assembled nanofiber gels in a 5mm gap and analyzed bone formation with micro-computed tomography and histology. We found within 4 weeks significantly higher bone formation relative to controls lacking phosphorylated residues and comparable bone formation to that observed in animals treated with a clinically used allogenic bone matrix.


Heart | 2005

Atorvastatin inhibits calcification and enhances nitric oxide synthase production in the hypercholesterolaemic aortic valve

Nalini M. Rajamannan; Malayannan Subramaniam; Stuart R. Stock; Neil J. Stone; Margaret J. Springett; K. I. Ignatiev; Joseph P. McConnell; Ravinder J. Singh; Robert O. Bonow; Thomas C. Spelsberg

Objective: To study in a rabbit model the expression of endothelial nitric oxide synthase (eNOS) in association with the development of calcification of the aortic valve, and to assess the effects of atorvastatin on eNOS expression, nitrite concentration, and aortic valve calcification. Methods: Rabbits (n  =  48) were treated for three months: 16, forming a control group, were fed a normal diet; 16 were fed a 0.5% (wt/wt) high cholesterol diet; and 16 were fed a 0.5% (wt/wt) cholesterol diet plus atorvastatin (2.5 mg/kg/day). The aortic valves were examined with eNOS immunostains and western blotting. Cholesterol and high sensitivity C reactive protein (hsCRP) concentrations were determined by standard assays. Serum nitrite concentrations were measured with a nitric oxide analyser. eNOS was localised by electron microscopy and immunogold labelling. Calcification in the aortic valve was evaluated by micro-computed tomography (CT). Results: Cholesterol, hsCRP, and aortic valve calcification were increased in the cholesterol fed compared with control animals. Atorvastatin inhibited calcification in the aortic valve as assessed by micro-CT. eNOS protein concentrations were unchanged in the control and cholesterol groups but increased in the atorvastatin treated group. Serum nitrite concentrations were decreased in the hypercholesterolaemic animals and increased in the group treated with atorvastatin. Conclusion: These data provide evidence that chronic experimental hypercholesterolaemia produces bone mineralisation in the aortic valve, which is inhibited by atorvastatin.


Biomaterials | 2013

Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds

Sungsoo S. Lee; Brian J. Huang; Stuart R. Kaltz; Shantanu Sur; Christina J. Newcomb; Stuart R. Stock; Ramille N. Shah; Samuel I. Stupp

Bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive cytokine that plays a critical role during bone regeneration and repair. In the extracellular environment, sulfated polysaccharides anchored covalently to glycoproteins such as syndecan and also non-covalently to fibronectin fibers have been shown to bind BMP-2 through a heparin-binding domain and regulate its bioactivity. We report here on a synthetic biomimetic strategy that emulates biological BMP-2 signaling through the use of peptide amphiphile nanofibers designed to bind heparin. The supramolecular nanofibers, which integrate the biological role of syndecan and fibronectin, were allowed to form gel networks within the pores of an absorbable collagen scaffold by simply infiltrating dilute solutions of the peptide amphiphile, heparan sulfate, and BMP-2. The hybrid biomaterial enhanced significantly bone regeneration in a rat critical-size femoral defect model using BMP-2 amounts that are one order of magnitude lower than required for healing in this animal model. Using micro-computed tomography, we also showed that the hybrid scaffold was more effective at bridging within the gap relative to a conventional scaffold of the type used clinically based on collagen and BMP-2. Histological evaluation also revealed the presence of more mature bone in the new ossified tissue when the low dose of BMP-2 was delivered using the biomimetic supramolecular system. These results demonstrate how molecularly designed materials that mimic features of the extracellular environment can amplify the regenerative capacity of growth factors.


Circulation | 2005

Calcified rheumatic valve neoangiogenesis is associated with vascular endothelial growth factor expression and osteoblast-like bone formation

Nalini M. Rajamannan; Thomas B. Nealis; Malayannan Subramaniam; Sanjay Pandya; Stuart R. Stock; Constatine I. Ignatiev; Thomas J. Sebo; Todd K. Rosengart; William D. Edwards; Patrick M. McCarthy; Robert O. Bonow; Thomas C. Spelsberg

Background—Rheumatic heart disease is the most common cause of valvular disease in developing countries. Despite the high prevalence of this disease, the cellular mechanisms are not well known. We hypothesized that rheumatic valve calcification is associated with an osteoblast bone formation and neoangiogenesis. Methods and Results—To test this hypothesis, we examined human rheumatic valves replaced at surgery (n=23), normal human valves (n=20) removed at cardiac transplantation, and degenerative mitral valve leaflets removed during surgical valve repair (n=15). Microcomputed tomography was used to assess mineralization fronts to reconstruct the extents of mineralization. Immunohistochemistry was used to localize osteopontin protein, α-actin, osteocalcin, vascular endothelial growth factor, von Willebrand factor, and CD68 (human macrophage). Microcomputed tomography demonstrated complex calcification developing within the heavily calcified rheumatic valves, not in the degenerative mitral valves and control valves. Immunohistochemistry localized osteopontin and osteocalcin to areas of smooth muscle cells within microvessels and proliferating myofibroblasts. Vascular endothelial growth factor was present in areas of inflammation and colocalized with the CD68 stain primarily in the calcified rheumatic valves. Alizarin red, osteopontin, and osteocalcin protein expression was upregulated in the calcified rheumatic valves and was present at low levels in the degenerative mitral valves. Conclusions—These findings support the concept that rheumatic valve calcification is not a random passive process but a regulated, inflammatory cellular process associated with the expression of osteoblast markers and neoangiogenesis.


Journal of Cellular Biochemistry | 2011

Substance P signaling mediates BMP‐dependent heterotopic ossification

Lixin Kan; Vitali Y. Lounev; Robert J. Pignolo; Lishu Duan; Yijie Liu; Stuart R. Stock; Tammy McGuire; Bao Lu; Norma P. Gerard; Eileen M. Shore; Frederick S. Kaplan; John A. Kessler

Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive bone morphogenetic protein (BMP) signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro‐inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse‐BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however, null mutations of the preprotachykinin (PPT) gene encoding SP prevent HO. Importantly, ablation of SP+ sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down‐regulation of NK1r‐expressing mast cells also profoundly inhibit injury‐induced HO. These observations establish a potent neuro‐inflammatory induction and amplification circuit for BMP‐dependent HO lesion formation, and identify novel molecular targets for prevention of HO. J. Cell. Biochem. 112: 2759–2772, 2011.


Science Translational Medicine | 2016

Hyperelastic “bone”: A highly versatile, growth factor–free, osteoregenerative, scalable, and surgically friendly biomaterial

Adam E. Jakus; Alexandra L. Rutz; Sumanas W. Jordan; Abhishek Kannan; Sean M. Mitchell; Chawon Yun; Katie D. Koube; Sung C. Yoo; Herbert E. Whiteley; Claus Peter Richter; Robert D. Galiano; Wellington K. Hsu; Stuart R. Stock; Erin L. Hsu; Ramille N. Shah

A new, mechanically elastic biomaterial can be custom 3D-printed, is surgically friendly, and promotes robust bone regeneration. Building better bones What if we could create custom bone implants that would trigger their own replacement with real bone? Jakus and colleagues have done just this with a promising biomaterial that can be 3D-printed into many shapes and easily deployed in the operating room. Made mainly of hydroxyapatite and either polycaprolactone or poly(lactic-co-glycolic acid), this “hyperelastic bone” can be 3D-printed at up to 275 cm3/hour, the authors report. It also promoted bone growth in vitro, in mice and rats, and in a case study of skull repair in a rhesus macaque. Its effectiveness, fast, easy synthesis, and ease of use in surgery set it apart from many of the materials now available for bone repair. Despite substantial attention given to the development of osteoregenerative biomaterials, severe deficiencies remain in current products. These limitations include an inability to adequately, rapidly, and reproducibly regenerate new bone; high costs and limited manufacturing capacity; and lack of surgical ease of handling. To address these shortcomings, we generated a new, synthetic osteoregenerative biomaterial, hyperelastic “bone” (HB). HB, which is composed of 90 weight % (wt %) hydroxyapatite and 10 wt % polycaprolactone or poly(lactic-co-glycolic acid), could be rapidly three-dimensionally (3D) printed (up to 275 cm3/hour) from room temperature extruded liquid inks. The resulting 3D-printed HB exhibited elastic mechanical properties (~32 to 67% strain to failure, ~4 to 11 MPa elastic modulus), was highly absorbent (50% material porosity), supported cell viability and proliferation, and induced osteogenic differentiation of bone marrow–derived human mesenchymal stem cells cultured in vitro over 4 weeks without any osteo-inducing factors in the medium. We evaluated HB in vivo in a mouse subcutaneous implant model for material biocompatibility (7 and 35 days), in a rat posterolateral spinal fusion model for new bone formation (8 weeks), and in a large, non-human primate calvarial defect case study (4 weeks). HB did not elicit a negative immune response, became vascularized, quickly integrated with surrounding tissues, and rapidly ossified and supported new bone growth without the need for added biological factors.


Acta Biomaterialia | 2010

Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin.

Alix C. Deymier-Black; J.D. Almer; Stuart R. Stock; Dean R. Haeffner; David C. Dunand

The elastic properties of dentin, a biological composite consisting of stiff hydroxyapatite (HAP) nano-platelets within a compliant collagen matrix, are determined by the volume fraction of these two phases and the load transfer between them. We have measured the elastic strains in situ within the HAP phase of bovine dentine by high energy X-ray diffraction for a series of static compressive stresses at ambient temperature. The apparent HAP elastic modulus (ratio of applied stress to elastic HAP strain) was found to be 18+/-2GPa. This value is significantly lower than the value of 44GPa predicted by the lower bound load transfer Voigt model, using HAP and collagen volume fractions determined by thermo-gravimetric analysis. This discrepancy is explained by (i) a reduction in the intrinsic Youngs modulus of the nano-size HAP platelets due to the high fraction of interfacial volume and (ii) an increase in local stresses due to stress concentration around the dentin tubules.


Radiation Research | 2008

Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation

Eric R. Bandstra; Michael J. Pecaut; Erica R. Anderson; Jeffrey S. Willey; Francesco De Carlo; Stuart R. Stock; Daila S. Gridley; Gregory A. Nelson; Howard G. Levine; Ted A. Bateman

Abstract Bandstra, E. R., Pecaut, M. J., Anderson, E. R., Willey, J. S., De Carlo, F., Stock, S. R., Gridley, D. S., Nelson, G. A., Levine, H. G. and Bateman, T. A. Long-Term Dose Response of Trabecular Bone in Mice to Proton Radiation. Radiat. Res. 169, 607–614 (2008). Astronauts on exploratory missions will experience a complex environment, including microgravity and radiation. While the deleterious effects of unloading on bone are well established, fewer studies have focused on the effects of radiation. We previously demonstrated that 2 Gy of ionizing radiation has deleterious effects on trabecular bone in mice 4 months after exposure. The present study investigated the skeletal response after total doses of proton radiation that astronauts may be exposed to during a solar particle event. We exposed mice to 0.5, 1 or 2 Gy of whole-body proton radiation and killed them humanely 117 days later. Tibiae and femora were analyzed using microcomputed tomography, mechanical testing, mineral composition and quantitative histomorphometry. Relative to control mice, mice exposed to 2 Gy had significant differences in trabecular bone volume fraction (−20%), trabecular separation (+11%), and trabecular volumetric bone mineral density (−19%). Exposure to 1 Gy radiation induced a nonsignificant trend in trabecular bone volume fraction (−13%), while exposure to 0.5 Gy resulted in no differences. No response was detected in cortical bone. Further analysis of the 1-Gy mice using synchrotron microCT revealed a significantly lower trabecular bone volume fraction (−13%) than in control mice. Trabecular bone loss 4 months after exposure to 1 Gy highlights the importance of further examination of how space radiation affects bone.

Collaboration


Dive into the Stuart R. Stock's collaboration.

Top Co-Authors

Avatar

Jonathan Almer

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Arthur Veis

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Xianghui Xiao

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Erin L. Hsu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. De Carlo

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco De Carlo

Argonne National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge