Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stuart Sims is active.

Publication


Featured researches published by Stuart Sims.


eLife | 2014

Autophagy is a critical regulator of memory CD8+ T cell formation

Daniel J. Puleston; Hanlin Zhang; Timothy J. Powell; Elina Lipina; Stuart Sims; Isabel Panse; Alexander Scarth Watson; Vincenzo Cerundolo; Alain Townsend; Paul Klenerman; Anna Katharina Simon

During infection, CD8+ T cells initially expand then contract, leaving a small memory pool providing long lasting immunity. While it has been described that CD8+ T cell memory formation becomes defective in old age, the cellular mechanism is largely unknown. Autophagy is a major cellular lysosomal degradation pathway of bulk material, and levels are known to fall with age. In this study, we describe a novel role for autophagy in CD8+ T cell memory formation. Mice lacking the autophagy gene Atg7 in T cells failed to establish CD8+ T cell memory to influenza and MCMV infection. Interestingly, autophagy levels were diminished in CD8+ T cells from aged mice. We could rejuvenate CD8+ T cell responses in elderly mice in an autophagy dependent manner using the compound spermidine. This study reveals a cell intrinsic explanation for poor CD8+ T cell memory in the elderly and potentially offers novel immune modulators to improve aged immunity. DOI: http://dx.doi.org/10.7554/eLife.03706.001


Journal of Virology | 2010

Efficacious Early Antiviral Activity of HIV Gag- and Pol-Specific HLA-B*2705-Restricted CD8+ T Cells

Rebecca Payne; Henrik N. Kløverpris; Jonah B. Sacha; Zabrina L. Brumme; Chanson J. Brumme; Søren Buus; Stuart Sims; Stephen Hickling; Lynn Riddell; Fabian Chen; Graz Luzzi; Anne Edwards; Rodney E. Phillips; Julia G. Prado; Philip J. R. Goulder

ABSTRACT The association between HLA-B*2705 and the immune control of human immunodeficiency virus type 1 (HIV-1) has previously been linked to the targeting of the HLA-B*2705-restricted Gag epitope KRWIILGLNK (KK10) by CD8+ T cells. In order to better define the mechanisms of the HLA-B*2705 immune control of HIV, we first characterized the CD8+ T-cell responses of nine highly active antiretroviral therapy (HAART)-naïve B*2705-positive subjects. Unexpectedly, we observed a strong response to an HLA-B*2705-restricted Pol epitope, KRKGGIGGY (KY9), in 8/9 subjects. The magnitude of the KY9 response was only marginally lower than that of the KK10-specific response (median, 695 versus 867 spot-forming cells [SFC]/million peripheral blood mononuclear cells [PBMCs]; not significant [NS]), and viral escape mutants were observed in both KY9 and KK10, resulting from selection pressure driven by the respective CD8+ T-cell response. By comparing inhibitions of viral replication by CD8+ T cells specific for the Gag KK10, Pol KY9, and Vpr VL9 HLA-B*2705-restricted epitopes, we observed a consistent hierarchy of antiviral efficacy (Gag KK10 > Pol KY9 > Vpr VL9). This hierarchy was associated with early recognition of HIV-1-infected cells, within 6 h of infection, by KK10- and KY9-specific CD8+ T cells but not until 18 h postinfection by VL9-specific CD8+ T cells. There was no association between antiviral efficacy and proliferative capacity, cytotoxicity, polyfunctionality, or T-cell receptor (TCR) avidity. These data are consistent with previous studies indicating an important role for the B*2705-Gag KK10 response in the control of HIV but also suggest a previously unrecognized role played by the subdominant Pol-specific KY9 response in HLA-B*2705-mediated control of HIV and that the recognition of HIV-infected cells by CD8+ T cells early in the viral life cycle may be important for viral containment in HIV-infected individuals.


PLOS ONE | 2011

A Dominant Role for the Immunoproteasome in CD8+ T Cell Responses to Murine Cytomegalovirus

Sarah L. Hutchinson; Stuart Sims; Geraldine A. O'Hara; Jon Silk; Uzi Gileadi; Vincenzo Cerundolo; Paul Klenerman

Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the worlds population and causes disease in neonates and immunocompromised adults. CD8+ T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8+ T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8+ T cell responses to MCMV – both conventional memory responses and those undergoing long-term expansion or “inflation”. We infected LMP7−/− and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8+ T cell responses using intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory “inflating” epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8+ T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and other viruses.


Gut | 2011

Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection

Karen Fitzmaurice; Danijela Petrovic; Narayan Ramamurthy; Ruth Simmons; Shazma Merani; Silvana Gaudieri; Stuart Sims; Eugene Dempsey; Elizabeth Freitas; Susan Lea; Susan McKiernan; Suzanne Norris; Aideen Long; Dermot Kelleher; Paul Klenerman

Background and aims CD8 T cells are central to the control of hepatitis C virus (HCV) although the key features of a successful CD8 T cell response remain to be defined. In a cohort of Irish women infected by a single source, a strong association between viral clearance and the human lecucocyte (HLA)-A*03 allele has been described, and the aim of this study was to define the protective nature of the associated CD8 T cell response. Methods A sequence-led approach was used to identify HLA-A*03-restricted epitopes. We examine the CD8 T cell response associated with this gene and address the likely mechanism underpinning this protective effect in this special cohort, using viral sequencing, T cell assays and analysis of fitness of viral mutants. Results A strong ‘HLA footprint’ in a novel NS3 epitope (TVYHGAGTK) was observed. A lysine (K) to arginine (R) substitution at position 9 (K1088R) was seen in a significant number of A*03-positive patients (9/12) compared with the control group (1/33, p=0.0003). Threonine (T) was also substituted with alanine (A) at position 8 (T1087A) more frequently in A*03-positive patients (6/12) compared with controls (2/33, p=0.01), and the double substitution of TK to AR was also observed predominantly in HLA-A*03-positive patients (p=0.004). Epitope-specific CD8 T cell responses were observed in 60% of patients three decades after exposure and the mutants selected in vivo impacted on recognition in vitro. Using HCV replicons matched to the viral sequences, viral fitness was found to be markedly reduced by the K1088R substitution but restored by the second substitution T1087A. Conclusions It is proposed that at least part of the protective effect of HLA-A*03 results from targeting of this key epitope in a functional site: the requirement for two mutations to balance fitness and escape provides an initial host advantage. This study highlights the potential protective impact of common HLA-A alleles against persistent viruses, with important implications for HCV vaccine studies.


Immunogenetics | 2011

HLArestrictor—a tool for patient-specific predictions of HLA restriction elements and optimal epitopes within peptides

Malene Erup Larsen; Henrik N. Kløverpris; Anette Stryhn; Catherine Koofhethile; Stuart Sims; Thumbi Ndung’u; Philip J. R. Goulder; Søren Buus; Morten Nielsen

Traditionally, T cell epitope discovery requires considerable amounts of tedious, slow, and costly experimental work. During the last decade, prediction tools have emerged as essential tools allowing researchers to select a manageable list of epitope candidates to test from a larger peptide, protein, or even proteome. However, no current tools address the complexity caused by the highly polymorphic nature of the restricting HLA molecules, which effectively individualizes T cell responses. To fill this gap, we here present an easy-to-use prediction tool named HLArestrictor (http://www.cbs.dtu.dk/services/HLArestrictor), which is based on the highly versatile and accurate NetMHCpan predictor, which here has been optimized for the identification of both the MHC restriction element and the corresponding minimal epitope of a T cell response in a given individual. As input, it requires high-resolution (i.e., 4-digit) HLA typing of the individual. HLArestrictor then predicts all 8–11mer peptide binders within one or more larger peptides and provides an overview of the predicted HLA restrictions and minimal epitopes. The method was tested on a large dataset of HIV IFNγ ELIspot peptide responses and was shown to identify HLA restrictions and minimal epitopes for about 90% of the positive peptide/patient pairs while rejecting more than 95% of the negative peptide-HLA pairs. Furthermore, for 18 peptide/HLA tetramer validated responses, HLArestrictor in all cases predicted both the HLA restriction element and minimal epitope. Thus, HLArestrictor should be a valuable tool in any T cell epitope discovery process aimed at identifying new epitopes from infectious diseases and other disease models.


Journal of Immunology | 2013

Age-Associated Increase of Low-Avidity Cytomegalovirus-Specific CD8+ T Cells That Re-Express CD45RA

Stephen J. Griffiths; Natalie E. Riddell; Joanne E. Masters; Valentina Libri; Sian M. Henson; Anne M. Wertheimer; Diana L. Wallace; Stuart Sims; Laura Rivino; Anis Larbi; David M. Kemeny; Janko Nikolich-Zugich; Florian Kern; Paul Klenerman; Vince Emery; Arne N. Akbar

The mechanisms regulating memory CD8+ T cell function and homeostasis during aging are unclear. CD8+ effector memory T cells that re-express CD45RA increase considerably in older humans and both aging and persistent CMV infection are independent factors in this process. We used MHC class I tetrameric complexes that were mutated in the CD8 binding domain to identify CMV-specific CD8+ T cells with high Ag-binding avidity. In individuals who were HLA-A*0201, CD8+ T cells that expressed CD45RA and were specific for the pp65 protein (NLVPMVATV epitope) had lower avidity than those that expressed CD45RO and demonstrated decreased cytokine secretion and cytolytic potential after specific activation. Furthermore, low avidity NLVPMVATV-specific CD8+ T cells were significantly increased in older individuals. The stimulation of blood leukocytes with CMV lysate induced high levels of IFN-α that in turn induced IL-15 production. Moreover, the addition of IL-15 to CD45RA−CD45RO+ CMV-specific CD8+ T cells induced CD45RA expression while Ag activated cells remained CD45RO+. This raises the possibility that non-specific cytokine–driven accumulation of CMV-specific CD8+CD45RA+ T cells with lower Ag-binding avidity may exacerbate the effects of viral reactivation on skewing the T cell repertoire in CMV-infected individuals during aging.


Journal of Clinical Investigation | 2008

Defining the directionality and quality of influenza virus–specific CD8+ T cell cross-reactivity in individuals infected with hepatitis C virus

Victoria Kasprowicz; Scott M. Ward; Alison V. Turner; Alexandros Grammatikos; Brian E. Nolan; Lia Laura Lewis-Ximenez; Charles Sharp; Jenny Woodruff; Vicki M. Fleming; Stuart Sims; Bruce D. Walker; Andrew K. Sewell; Georg M. Lauer; Paul Klenerman

Cross-reactivity of murine and recently human CD8(+) T cells between different viral peptides, i.e., heterologous immunity, has been well characterized. However, the directionality and quality of these cross-reactions is critical in determining their biological importance. Herein we analyzed the response of human CD8(+) T cells that recognize both a hepatitis C virus peptide (HCV-NS3) and a peptide derived from the influenza neuraminidase protein (Flu-NA). To detect the cross-reactive CD8(+) T cells, we used peptide-MHC class I complexes (pMHCs) containing a new mutant form of MHC class I able to bind CD8 more strongly than normal MHC class I complexes. T cell responses against HCV-NS3 and Flu-NA peptide were undetectable in normal donors. In contrast, some responses against the Flu-NA peptide were identified in HCV(+) donors who showed strong HCV-NS3-specific reactivity. The Flu-NA peptide was a weak agonist for CD8(+) T cells in HCV(+) individuals on the basis of novel pMHCs and functional assays. These data support the idea of cross-reactivity between the 2 peptides, but indicate that reactivity toward the Flu-NA peptide is highly CD8-dependent and occurs predominantly after priming during HCV infection. Our findings indicate the utility of the novel pMHCs in dissecting cross-reactivity and suggest that cross-reactivity between HCV and influenza is relatively weak. Further studies are needed to relate affinity and functionality of cross-reactive T cells.


Expert Review of Vaccines | 2010

MHC-peptide tetramers for the analysis of antigen-specific T cells

Stuart Sims; Christian B. Willberg; Paul Klenerman

The development of the fluorescently labeled tetrameric MHC–peptide complex has enabled the direct visualization, quantification and phenotypic characterization of antigen-specific T cells using flow cytometry and has transformed our understanding of cellular immune responses. The combination of this technology with functional assays provides many new insights into these cells, allowing investigation into their lifecycle, manner of death and effector function. In this article, we hope to provide an overview of the techniques used in the construction of these tetramers, the problems and solutions associated with them, and the methods used in the study of antigen-specific T cells. Understanding how the antigen-specific cells develop and function in different circumstances and with different pathogens will be key to understanding natural host defense, as well as vaccine design and assessment.


The Journal of Infectious Diseases | 2011

High Frequency, Sustained T Cell Responses to PARV4 Suggest Viral Persistence In Vivo

Ruth Simmons; Colin P. Sharp; Stuart Sims; Henrik N. Kløverpris; Philip J. R. Goulder; Peter Simmonds; Paul Bowness; Paul Klenerman

Background. Parvovirus 4 (PARV4) is a recently identified human virus that has been found in livers of patients infected with hepatitis C virus (HCV) and in bone marrow of individuals infected with human immunodeficiency virus (HIV). T cells are important in controlling viruses but may also contribute to disease pathogenesis. The interaction of PARV4 with the cellular immune system has not been described. Consequently, we investigated whether T cell responses to PARV4 could be detected in individuals exposed to blood-borne viruses. Methods. Interferon γ (IFN-γ) enzyme-linked immunospot assay, intracellular cytokine staining, and a tetrameric HLA-A*0201–peptide complex were used to define the lymphocyte populations responding to PARV4 NS peptides in 88 HCV-positive and 13 HIV-positive individuals. Antibody responses were tested using a recently developed PARV4 enzyme-linked immunosorbent assay. Results. High-frequency T cell responses against multiple PARV4 NS peptides and antibodies were observed in 26% of individuals. Typical responses to the NS pools were >1000 spot-forming units per million peripheral blood mononuclear cells. Conclusions. PARV4 infection is common in individuals exposed to blood-borne viruses and elicits strong T cell responses, a feature typically associated with persistent, contained infections such as cytomegalovirus. Persistence of PARV4 viral antigen in tissue in HCV-positive and HIV-positive individuals and/or the associated activated antiviral T cell response may contribute to disease pathogenesis.


Cell Reports | 2015

Adenoviral Vector Vaccination Induces a Conserved Program of CD8+ T Cell Memory Differentiation in Mouse and Man

Beatrice Bolinger; Stuart Sims; Leo Swadling; Geraldine O’Hara; Catherine de Lara; Dilair Baban; Natasha Saghal; Lian Ni Lee; Emanuele Marchi; Mark M. Davis; Evan W. Newell; Stefania Capone; Antonella Folgori; E. Barnes; Paul Klenerman

Summary Following exposure to vaccines, antigen-specific CD8+ T cell responses develop as long-term memory pools. Vaccine strategies based on adenoviral vectors, e.g., those developed for HCV, are able to induce and sustain substantial CD8+ T cell populations. How such populations evolve following vaccination remains to be defined at a transcriptional level. We addressed the transcriptional regulation of divergent CD8+ T cell memory pools induced by an adenovector encoding a model antigen (beta-galactosidase). We observe transcriptional profiles that mimic those following infection with persistent pathogens, murine and human cytomegalovirus (CMV). Key transcriptional hallmarks include upregulation of homing receptors and anti-apoptotic pathways, driven by conserved networks of transcription factors, including T-bet. In humans, an adenovirus vaccine induced similar CMV-like phenotypes and transcription factor regulation. These data clarify the core features of CD8+ T cell memory following vaccination with adenovectors and indicate a conserved pathway for memory development shared with persistent herpesviruses.

Collaboration


Dive into the Stuart Sims's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Søren Buus

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge