Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Su Hui Yang is active.

Publication


Featured researches published by Su Hui Yang.


Bioorganic & Medicinal Chemistry Letters | 2009

Molecular design, synthesis and docking study of benz[b]oxepines and 12-oxobenzo[c]phenanthridinones as topoisomerase 1 inhibitors.

Suh-Hee Lee; Hue Thi My Van; Su Hui Yang; Kyung-Tae Lee; Youngjoo Kwon; Won-Jea Cho

Benz[b]oxepines 4a-g and 12-oxobenzo[c]phenanthridines 5a-d were designed and synthesized as constrained forms of 3-arylisoquinolines through an intramolecular radical cyclization reaction. Radical cyclization of O-vinyl compounds preferentially led to the 7-endo-trig cyclization pathway to the benz[b]oxepines and 12-oxobenzo[c]phenanthridines through 6-exo-trig path as minor products. Among the synthesized compounds, benz[b]oxepine derivative 4e exhibited potent in vitro cytotoxicity against three different tumor cell lines, as well as topoisomerase 1 inhibitory activity. A Surflex-Dock docking study was performed to clarify the topoisomerase 1 activity of 4e.


Bioorganic & Medicinal Chemistry | 2011

Virtual screening and synthesis of quinazolines as novel JAK2 inhibitors.

Su Hui Yang; Daulat Bikram Khadka; Suk Hee Cho; Hye-Kyung Ju; Kwang Youl Lee; Ho Jae Han; Kyung-Tae Lee; Won-Jea Cho

JAK2 is an important target in multiple processes associated with tumor growth. In this study, virtual screening was employed for hit compound identification with chemical libraries using SurflexDock. Subsequently, hit optimization for potent and selective candidate JAK2 inhibitors was performed through synthesis of diverse C-1 substituted quinazoline derivatives. A novel compound 5p, (6,7-dimethoxyquinazolin-4-yl)naphthalen-1-ylamine, was thus obtained. JAK2 inhibitory activity of 5p was 43% at 20μM and this was comparable to AG490, a representative JAK2 inhibitor. Moreover, 5p showed a positive correlation between JAK2 inhibition and cytotoxicity; 5p treatment in HT-29 cells strongly inhibited JAK2 activation and subsequent STAT3 phosphorylation, reduced anti-apoptotic protein levels, and finally induced apoptosis. This suggests that compound 5p is a candidate inhibitor of JAK2 and its downstream STAT3 signaling pathway for antitumor therapy. In the docking model, the quinazoline template of 5k, the lead compound, occupied a hydrophobic region such as Leu856, Leu855, Ala880, Leu932 and Gly935, and the highly conserved hydrogen bond was created by 6-OMe of the ring template, which binds to the NH of Arg980. Moreover, hydrophobic interactions were identified between morpholine moiety and the hydrophobic region formed by Leu855, Ala880, Tyr931, Val911 and Met929. Also, compound 5k more strongly inhibited JAK2 phosphorylation in mouse embryonic stem cells than AG490. Our study shows the successful application of virtual screening for lead discovery and we propose that the novel compound 5p can be an effective JAK2 inhibitor candidate for further antitumor agent research.


Journal of Biological Chemistry | 2012

Structure-based Virtual Screening and Identification of a Novel Androgen Receptor Antagonist

Chin-Hee Song; Su Hui Yang; Eunsook Park; Suk Hee Cho; Eun-Yeung Gong; Daulat Bikram Khadka; Won-Jea Cho; Keesook Lee

Background: The androgen receptor (AR) is the primary drug target for prostate cancer treatment. Results: We have identified a novel AR antagonist, the compound 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl)nicotinamide (DIMN) that inhibits the growth of AR-positive prostate cancer cells. Conclusion: DIMN has been identified as a new lead structure targeting the AR. Significance: This novel AR antagonist could be a useful therapeutic agent for prostate cancer treatment. Hormonal therapies, mainly combinations of anti-androgens and androgen deprivation, have been the mainstay treatment for advanced prostate cancer because the androgen-androgen receptor (AR) system plays a pivotal role in the development and progression of prostate cancers. However, the emergence of androgen resistance, largely due to inefficient anti-hormone action, limits the therapeutic usefulness of these therapies. Here, we report that 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl)nicotinamide (DIMN) acts as a novel anti-androgenic compound that may be effective in the treatment of both androgen-dependent and androgen-independent prostate cancers. Through AR structure-based virtual screening using the FlexX docking model, fifty-four compounds were selected and further screened for AR antagonism via cell-based tests. One compound, DIMN, showed an antagonistic effect specific to AR with comparable potency to that of the classical AR antagonists, hydroxyflutamide and bicalutamide. Consistent with their anti-androgenic activity, DIMN inhibited the growth of androgen-dependent LNCaP prostate cancer cells. Interestingly, the compound also suppressed the growth of androgen-independent C4–2 and CWR22rv prostate cancer cells, which express a functional AR, but did not suppress the growth of the AR-negative prostate cancer cells PPC-1, DU145, and R3327-AT3.1. Taken together, the results suggest that the synthetic compound DIMN is a novel anti-androgen and strong candidate for useful therapeutic agent against early stage to advanced prostate cancer.


Journal of Medicinal Chemistry | 2013

SAR Based Design of Nicotinamides as a Novel Class of Androgen Receptor Antagonists for Prostate Cancer

Su Hui Yang; Chin-Hee Song; Hue Thi My Van; Eunsook Park; Daulat Bikram Khadka; Eun-Yeung Gong; Keesook Lee; Won-Jea Cho

Molecular knowledge of pure antagonism and systematic SAR study offered a direction for structural optimization of DIMN to provide nicotinamides as a novel series of AR antagonists. Nicotinamides with extended linear scaffold bearing sterically bulky alkoxy groups on isoquinoline end were synthesized for H12 displacement. AR binding affinity and molecular basis of antiandrogenic effect establish the optimized derivatives, 7au and 7bb, as promising candidates of second generation AR antagonists for advanced prostate cancer.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis, in vitro and in vivo evaluation of 3-arylisoquinolinamines as potent antitumor agents

Su Hui Yang; Hue Thi My Van; Thanh Nguyen Le; Daulat Bikram Khadka; Suk Hee Cho; Kyung-Tae Lee; Hwa-Jin Chung; Sang Kook Lee; Chang-Ho Ahn; Young Bok Lee; Won-Jea Cho

In the search for potent water-soluble 3-arylisoquinolines, several 3-arylisoquinolinamines were designed and synthesized. Various substituted 3-arylisoquinolinamines exhibited strong cytotoxic activity against eight different human cancer cell lines. In particular, C-6 or C-7 dimethylamino-substituted 3-arylisoquinolinamines displayed stronger potency than the lead compound 7a. Interestingly, compounds 7b and 7c showed more effective activity against paclitaxel-resistant HCT-15 human colorectal cancer cell lines when compared to the original cytotoxic cancer drug, paclitaxel. We analyzed the cell cycle dynamics by flow cytometry and found that treatment of human HCT-15 cells with 3-arylisoquinolinamine 7b blocked or delayed the progression of cells from G0/G1 phase into S phase, and induced cell death. Treatment with compound 7b also significantly inhibited the growth of tumors and enhanced tumor regression in a paclitaxel-resistant HCT-15 xenograft model.


European Journal of Medicinal Chemistry | 2014

Design, synthesis and systematic evaluation of cytotoxic 3-heteroarylisoquinolinamines as topoisomerases inhibitors.

Hue Thi My Van; Hyunjung Woo; Hyung Min Jeong; Daulat Bikram Khadka; Su Hui Yang; Chao Zhao; Yifeng Jin; Eung-Seok Lee; Kwang Youl Lee; Youngjoo Kwon; Won-Jea Cho

A series of 3-heteroarylisoquinolinamines were designed, synthesized and evaluated for cytotoxicity, topoisomerases (topos) inhibitory activities and cell cycle inhibition. Several of the 3-heteroarylisoquinolines exhibited selective cytotoxicity against human ductal breast epithelial tumor (T47D) cells over non-cancerous human breast epithelial (MCF-10A) and human prostate cancer (DU145) cells. Most of the derivatives showed greater cytotoxicity in human colorectal adenocarcinoma (HCT-15) cells than camptothecin (CPT), etoposide and doxorubicin (DOX). Generally, 3-heteroarylisoquinolinamines displayed greater affinity for topo I than topo II. 3-Heteroarylisoquinolinamines with greater topo I inhibitory effect exhibited potent cytotoxicity. Piperazine-substituted derivative, 5b, with potent topo I and moderate topo II activities intercalated between DNA bases and interacted with topos through H-bonds at the DNA cleavage site of a docking model. Moreover, flow cytometry indicated that cytotoxic 3-heteroarylisoquinolinamines led to accumulation of human cervical (HeLa) cancer cells in the different phases of the cell cycle before apoptosis. Taken together, 3-heteroarylisoquinolinamines possessed potent cytotoxicity with topos and cell cycle inhibitory activities.


Bioorganic & Medicinal Chemistry | 2011

Synthesis of benzo[3,4]azepino[1,2-b]isoquinolin-9-ones from 3-arylisoquinolines via ring closing metathesis and evaluation of topoisomerase I inhibitory activity, cytotoxicity and docking study

Hue Thi My Van; Daulat Bikram Khadka; Su Hui Yang; Thanh Nguyen Le; Suk Hee Cho; Chao Zhao; Ik-Soo Lee; Youngjoo Kwon; Kyung-Tae Lee; Yong-Chul Kim; Won-Jea Cho

Benzo[3,4]azepino[1,2-b]isoquinolinones were designed and developed as constraint forms of 3-arylisquinolines with an aim to inhibit topoisomerase I (topo I). Ring closing metathesis (RCM) of 3-arylisoquinolines with suitable diene moiety provided seven membered azepine rings of benzoazepinoisoquinolinones. Spectral analyses of these heterocyclic compounds demonstrated that the methylene protons of the azepine rings are nonequivalent. The shielding environment experienced by these geminal hydrogens differs unusually by 2.21ppm. As expected, benzoazepinoisoquinolinones displayed potent cytotoxicity. However, cytotoxic effects of the compounds were not related to topo I inhibition which is explained by non-planar conformation of the rigid compounds incapable of intercalating between DNA base pairs. In contrast, flexible 3-arylisoquinoline 8d attains active conformation at drug target site to exhibit topo I inhibition identical to cytotoxic alkaloid, camptothecin (CPT).


Bioorganic & Medicinal Chemistry | 2011

Design and synthesis of 4-amino-2-phenylquinazolines as novel topoisomerase I inhibitors with molecular modeling

Thanh Nguyen Le; Su Hui Yang; Daulat Bikram Khadka; Hue Thi My Van; Suk Hee Cho; Youngjoo Kwon; Eung-Seok Lee; Kyung-Tae Lee; Won-Jea Cho

4-Amino-2-phenylquinazolines 7 were designed as bioisosteres of 3-arylisoquinolinamines 6 that were energy minimized to provide stable conformers. Interestingly, the 2-phenyl ring of 4-amino-2-phenylquinazolines was parallel to the quinazoline ring and improved their DNA intercalation ability in the DNA-topo I complex. Among the synthesized 4-amino group-substituted analogs, 4-cyclohexylamino-2-phenylquinazoline 7h exhibited potent topo I inhibitory activity and strong cytotoxicity. Interestingly, consistency was observed between the cytotoxicities and topo I activities in these quinazoline analogs, suggesting that the target of 4-amino-2-phenylquinazolines is limited to topo I. Molecular docking studies were performed with the Surflex-Dock program to afford the ideal interaction mode of the compound into the binding site of the DNA-topo I complex in order to clarify the topo I activity of 7h.


European Journal of Medicinal Chemistry | 2015

Modification of 3-arylisoquinolines into 3,4-diarylisoquinolines and assessment of their cytotoxicity and topoisomerase inhibition

Daulat Bikram Khadka; Hyunjung Woo; Su Hui Yang; Chao Zhao; Yifeng Jin; Thanh Nguyen Le; Youngjoo Kwon; Won-Jea Cho

Inspired by the initial success of the monoarylisoquinolines and the quest to identify more potent and selective anticancer agents with topoisomerase (topo) inhibitory activity, series of diarylisoquinolines (3,4-diarylisoquinolones and 3,4-diarylisoquinolinamines) were designed and synthesized. Synthesis of these compounds primarily involved lithiated toluamide-benzonitrile cycloaddition, Suzuki coupling, and nucleophilic aromatic substitution reactions. Eight of the derivatives were selectively toxic against human ductal breast epithelial tumor cells (T47D), human prostate cancer cells (DU145), and human colorectal adenocarcinoma cells (HCT-15), but had no effect on normal human breast epithelial cells (MCF10A). The topo inhibitory activities of the diarylisoquinoline compounds were relatively dependent upon their chemical structure. 3,4-Diarylisoquinolones generally did not inhibit topo I and only showed moderate inhibition of topo II. In contrast, several 3,4-diarylisoquinolinamines showed superior topo I inhibitory activity. Isoquinolinamine derivatives had greater affinity for topo I than for topo II. Topo inhibition by 3,4-diarylisoquinolines was further supported by docking models showing intercalative and/or H-bond interactions between these compounds and the DNA/topo(s). An analysis of the correlation between the cytotoxicity and topo inhibition of these compounds indicated that the primary biological target of derivatives with potent cytotoxicity was topo, which in turn establishes diaryl-substituted isoquinolines as a novel class of potential anticancer drugs.


European Journal of Medicinal Chemistry | 2010

Development of 3-aryl-1-isoquinolinamines as potent antitumor agents based on CoMFA

Su Hui Yang; Hue Thi My Van; Thanh Nguyen Le; Daulat Bikram Khadka; Suk Hee Cho; Kyung Tae Lee; Eung-Seok Lee; Young Bok Lee; Chang Ho Ahn; Won-Jea Cho

Various substituted 3-aryl-1-isoquinolinamines were designed and synthesized based on the previously constructed CoMFA model. Most of the synthesized compounds showed excellent potency in eight different human tumor cell lines as expected. In order to find the exact cytotoxic mechanism of these 3-aryl-1-isoquinolinamines, we analyzed the cell cycle dynamics by flow cytometry and found that 3-aryl-1-isoquinolinamine 6k-treated HeLa cells were arrested in G2/M phase, which is related to apoptosis.

Collaboration


Dive into the Su Hui Yang's collaboration.

Top Co-Authors

Avatar

Won-Jea Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hue Thi My Van

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Suk Hee Cho

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thanh Nguyen Le

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Chao Zhao

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yifeng Jin

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge