Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Su Nguyen is active.

Publication


Featured researches published by Su Nguyen.


IEEE Transactions on Evolutionary Computation | 2016

Automated Design of Production Scheduling Heuristics: A Review

Jürgen Branke; Su Nguyen; Christoph W. Pickardt; Mengjie Zhang

Hyper-heuristics have recently emerged as a powerful approach to automate the design of heuristics for a number of different problems. Production scheduling is a particularly popular application area for which a number of different hyper-heuristics have been developed and are shown to be effective, efficient, easy to implement, and reusable in different shop conditions. In particular, they seem to be a promising way to tackle highly dynamic and stochastic scheduling problems, an aspect that is specifically emphasized in this survey. Despite their success and the substantial number of papers in this area, there is currently no systematic discussion of the design choices and critical issues involved in the process of developing such approaches. This paper strives to fill this gap by summarizing the state-of-the-art approaches, suggesting a taxonomy, and providing the interested researchers and practitioners with guidelines for the design of hyper-heuristics in production scheduling. This paper also identifies challenges and open questions and highlights various directions for future work.


IEEE Transactions on Evolutionary Computation | 2013

A Computational Study of Representations in Genetic Programming to Evolve Dispatching Rules for the Job Shop Scheduling Problem

Su Nguyen; Mengjie Zhang; Mark Johnston; Kay Chen Tan

Designing effective dispatching rules is an important factor for many manufacturing systems. However, this time-consuming process has been performed manually for a very long time. Recently, some machine learning approaches have been proposed to support this task. In this paper, we investigate the use of genetic programming for automatically discovering new dispatching rules for the single objective job shop scheduling problem (JSP). Different representations of the dispatching rules in the literature are newly proposed in this paper and are compared and analysed. Experimental results show that the representation that integrates system and machine attributes can improve the quality of the evolved rules. Analysis of the evolved rules also provides useful knowledge about how these rules can effectively solve JSP.


IEEE Transactions on Evolutionary Computation | 2014

Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming

Su Nguyen; Mengjie Zhang; Mark Johnston; Kay Chen Tan

A scheduling policy strongly influences the performance of a manufacturing system. However, the design of an effective scheduling policy is complicated and time consuming due to the complexity of each scheduling decision, as well as the interactions among these decisions. This paper develops four new multi-objective genetic programming-based hyperheuristic (MO-GPHH) methods for automatic design of scheduling policies, including dispatching rules and due-date assignment rules in job shop environments. In addition to using three existing search strategies, nondominated sorting genetic algorithm II, strength Pareto evolutionary algorithm 2, and harmonic distance-based multi-objective evolutionary algorithm, to develop new MO-GPHH methods, a new approach called diversified multi-objective cooperative evolution (DMOCC) is also proposed. The novelty of these MO-GPHH methods is that they are able to handle multiple scheduling decisions simultaneously. The experimental results show that the evolved Pareto fronts represent effective scheduling policies that can dominate scheduling policies from combinations of existing dispatching rules with dynamic/regression-based due-date assignment rules. The evolved scheduling policies also show dominating performance on unseen simulation scenarios with different shop settings. In addition, the uniformity of the scheduling policies obtained from the proposed method of DMOCC is better than those evolved by other evolutionary approaches.


IEEE Transactions on Systems, Man, and Cybernetics | 2015

Automatic Programming via Iterated Local Search for Dynamic Job Shop Scheduling

Su Nguyen; Mengjie Zhang; Mark Johnston; Kay Chen Tan

Dispatching rules have been commonly used in practice for making sequencing and scheduling decisions. Due to specific characteristics of each manufacturing system, there is no universal dispatching rule that can dominate in all situations. Therefore, it is important to design specialized dispatching rules to enhance the scheduling performance for each manufacturing environment. Evolutionary computation approaches such as tree-based genetic programming (TGP) and gene expression programming (GEP) have been proposed to facilitate the design task through automatic design of dispatching rules. However, these methods are still limited by their high computational cost and low exploitation ability. To overcome this problem, we develop a new approach to automatic programming via iterated local search (APRILS) for dynamic job shop scheduling. The key idea of APRILS is to perform multiple local searches started with programs modified from the best obtained programs so far. The experiments show that APRILS outperforms TGP and GEP in most simulation scenarios in terms of effectiveness and efficiency. The analysis also shows that programs generated by APRILS are more compact than those obtained by genetic programming. An investigation of the behavior of APRILS suggests that the good performance of APRILS comes from the balance between exploration and exploitation in its search mechanism.


International Journal of Applied Metaheuristic Computing | 2010

Movement Strategies for Multi-Objective Particle Swarm Optimization

Su Nguyen; Voratas Kachitvichyanukul

Particle Swarm Optimization (PSO) is one of the most effective metaheuristics algorithms, with many successful real-world applications. The reason for the success of PSO is the movement behavior, which allows the swarm to effectively explore the search space. Unfortunately, the original PSO algorithm is only suitable for single objective optimization problems. In this paper, three movement strategies are discussed for multi-objective PSO (MOPSO) and popular test problems are used to confirm their effectiveness. In addition, these algorithms are also applied to solve the engineering design and portfolio optimization problems. Results show that the algorithms are effective with both direct and indirect encoding schemes.


Computers & Operations Research | 2013

Hybrid evolutionary computation methods for quay crane scheduling problems

Su Nguyen; Mengjie Zhang; Mark Johnston; Kay Chen Tan

Quay crane scheduling is one of the most important operations in seaport terminals. The effectiveness of this operation can directly influence the overall performance as well as the competitive advantages of the terminal. This paper develops a new priority-based schedule construction procedure to generate quay crane schedules. From this procedure, two new hybrid evolutionary computation methods based on genetic algorithm (GA) and genetic programming (GP) are developed. The key difference between the two methods is their representations which decide how priorities of tasks are determined. While GA employs a permutation representation to decide the priorities of tasks, GP represents its individuals as a priority function which is used to calculate the priorities of tasks. A local search heuristic is also proposed to improve the quality of solutions obtained by GA and GP. The proposed hybrid evolutionary computation methods are tested on a large set of benchmark instances and the computational results show that they are competitive and efficient as compared to the existing methods. Many new best known solutions for the benchmark instances are discovered by using these methods. In addition, the proposed methods also show their flexibility when applied to generate robust solutions for quay crane scheduling problems under uncertainty. The results show that the obtained robust solutions are better than those obtained from the deterministic inputs.


Automated Scheduling and Planning | 2013

Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach

Su Nguyen; Mengjie Zhang; Mark Johnston; Kay Chen Tan

Handling multiple conflicting objectives in dynamic job shop scheduling is challenging because many aspects of the problem need to be considered when designing dispatching rules. A multi-objective genetic programming based hyperheuristic (MO-GPHH) method is investigated here to facilitate the designing task. The goal of this method is to evolve a Pareto front of non-dominated dispatching rules which can be used to support the decision makers by providing them with potential trade-offs among different objectives. The experimental results under different shop conditions suggest that the evolved Pareto front contains very effective rules. Some extensive analyses are also presented to help confirm the quality of the evolved rules. The Pareto front obtained can cover a much wider ranges of rules as compared to a large number of dispatching rules reported in the literature.Moreover, it is also shown that the evolved rules are robust across different shop conditions.


congress on evolutionary computation | 2013

Genetic programming for order acceptance and scheduling

Jongho Park; Su Nguyen; Mengjie Zhang; Michael Johnston

This paper focuses on order acceptance and scheduling (OAS) problem, where both acceptance and sequencing decisions have to be handled simultaneously. Because of its complexity, designing effective heuristics or meta-heuristics for OAS is challenging. This paper will investigate how genetic programming (GP) can be used to deal with OAS. The goal of this paper is to develop new GP frameworks to evolve high-performance scheduling rules/heuristics for OAS. The new frameworks are developed based on two key aspects: (1) separating acceptance and sequencing decisions, and (2) enhancing the quality of scheduling rules by embedding heuristic search mechanisms. The experimental results show that separating decisions is not trivial and can easily lead to overfitting issues. Meanwhile, embedding heuristic ideas into the scheduling rules can help search for better solutions for OAS.


european conference on genetic programming | 2015

Evolving Ensembles of Dispatching Rules Using Genetic Programming for Job Shop Scheduling

John Park; Su Nguyen; Mengjie Zhang; Mark Johnston

Job shop scheduling (JSS) problems are important optimisation problems that have been studied extensively in the literature due to their applicability and computational difficulty. This paper considers static JSS problems with makespan minimisation, which are NP-complete for more than two machines. Because finding optimal solutions can be difficult for large problem instances, many heuristic approaches have been proposed in the literature. However, designing effective heuristics for different JSS problem domains is difficult. As a result, hyper-heuristics (HHs) have been proposed as an approach to automating the design of heuristics. The evolved heuristics have mainly been priority based dispatching rules (DRs). To improve the robustness of evolved heuristics generated by HHs, this paper proposes a new approach where an ensemble of rules are evolved using Genetic Programming (GP) and cooperative coevolution, denoted as Ensemble Genetic Programming for Job Shop Scheduling (EGP-JSS). The results show that EGP-JSS generally produces more robust rules than the single rule GP.


genetic and evolutionary computation conference | 2011

A genetic programming based hyper-heuristic approach for combinatorial optimisation

Su Nguyen; Mengjie Zhang; Mark Johnston

Genetic programming based hyper-heuristics (GPHH) have become popular over the last few years. Most of these proposed GPHH methods have focused on heuristic generation. This study investigates a new application of genetic programming (GP) in the field of hyper-heuristics and proposes a method called GPAM, which employs GP to evolve adaptive mechanisms (AM) to solve hard optimisation problems. The advantage of this method over other heuristic selection methods is the ability of evolved adaptive mechanisms to contain complicated combinations of heuristics and utilise problem solving states for heuristic selection. The method is tested on three problem domains and the results show that GPAM is very competitive when compared with existing hyper-heuristics. An analysis is also provided to gain more understanding of the proposed method.

Collaboration


Dive into the Su Nguyen's collaboration.

Top Co-Authors

Avatar

Mengjie Zhang

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Mark Johnston

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Kay Chen Tan

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yi Mei

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

John Park

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Bing Xue

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Gang Chen

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron Chen

Victoria University of Wellington

View shared research outputs
Researchain Logo
Decentralizing Knowledge