Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi Mei is active.

Publication


Featured researches published by Yi Mei.


IEEE Transactions on Evolutionary Computation | 2014

Cooperative Co-Evolution With Differential Grouping for Large Scale Optimization

Mohammad Nabi Omidvar; Xiaodong Li; Yi Mei; Xin Yao

Cooperative co-evolution has been introduced into evolutionary algorithms with the aim of solving increasingly complex optimization problems through a divide-and-conquer paradigm. In theory, the idea of co-adapted subcomponents is desirable for solving large-scale optimization problems. However, in practice, without prior knowledge about the problem, it is not clear how the problem should be decomposed. In this paper, we propose an automatic decomposition strategy called differential grouping that can uncover the underlying interaction structure of the decision variables and form subcomponents such that the interdependence between them is kept to a minimum. We show mathematically how such a decomposition strategy can be derived from a definition of partial separability. The empirical studies show that such near-optimal decomposition can greatly improve the solution quality on large-scale global optimization problems. Finally, we show how such an automated decomposition allows for a better approximation of the contribution of various subcomponents, leading to a more efficient assignment of the computational budget to various subcomponents.


IEEE Transactions on Evolutionary Computation | 2011

Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem

Yi Mei; Ke Tang; Xin Yao

The capacitated arc routing problem (CARP) is a challenging combinatorial optimization problem with many real-world applications, e.g., salting route optimization and fleet management. There have been many attempts at solving CARP using heuristic and meta-heuristic approaches, including evolutionary algorithms. However, almost all such attempts formulate CARP as a single-objective problem although it usually has more than one objective, especially considering its real-world applications. This paper studies multiobjective CARP (MO-CARP). A new memetic algorithm (MA) called decomposition-based MA with extended neighborhood search (D-MAENS) is proposed. The new algorithm combines the advanced features from both the MAENS approach for single-objective CARP and multiobjective evolutionary optimization. Our experimental studies have shown that such combination outperforms significantly an off-the-shelf multiobjective evolutionary algorithm, namely nondominated sorting genetic algorithm II, and the state-of-the-art multiobjective algorithm for MO-CARP (LMOGA). Our work has also shown that a specifically designed multiobjective algorithm by combining its single-objective version and multiobjective features may lead to competitive multiobjective algorithms for multiobjective combinatorial optimization problems.


IEEE Transactions on Evolutionary Computation | 2009

Memetic Algorithm With Extended Neighborhood Search for Capacitated Arc Routing Problems

Ke Tang; Yi Mei; Xin Yao

The capacitated arc routing problem (CARP) has attracted much attention during the last few years due to its wide applications in real life. Since CARP is NP-hard and exact methods are only applicable to small instances, heuristic and metaheuristic methods are widely adopted when solving CARP. In this paper, we propose a memetic algorithm, namely memetic algorithm with extended neighborhood search (MAENS), for CARP. MAENS is distinct from existing approaches in the utilization of a novel local search operator, namely Merge-Split (MS). The MS operator is capable of searching using large step sizes, and thus has the potential to search the solution space more efficiently and is less likely to be trapped in local optima. Experimental results show that MAENS is superior to a number of state-of-the-art algorithms, and the advanced performance of MAENS is mainly due to the MS operator. The application of the MS operator is not limited to MAENS. It can be easily generalized to other approaches.


IEEE Transactions on Evolutionary Computation | 2014

Cooperative Coevolution With Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems

Yi Mei; Xiaodong Li; Xin Yao

In this paper, a divide-and-conquer approach is proposed to solve the large-scale capacitated arc routing problem (LSCARP) more effectively. Instead of considering the problem as a whole, the proposed approach adopts the cooperative coevolution (CC) framework to decompose it into smaller ones and solve them separately. An effective decomposition scheme called the route distance grouping (RDG) is developed to decompose the problem. Its merit is twofold. First, it employs the route information of the best-so-far solution, so that the quality of the decomposition is upper bounded by that of the best-so-far solution. Thus, it can keep improving the decomposition by updating the best-so-far solution during the search. Second, it defines a distance between routes, based on which the potentially better decompositions can be identified. Therefore, RDG is able to obtain promising decompositions and focus the search on the promising regions of the vast solution space. Experimental studies verified the efficacy of RDG on the instances with a large number of tasks and tight capacity constraints, where it managed to obtain significantly better results than its counterpart without decomposition in a much shorter time. Furthermore, the best-known solutions of the EGL-G LSCARP instances are much improved.


systems man and cybernetics | 2011

A Memetic Algorithm for Periodic Capacitated Arc Routing Problem

Yi Mei; Ke Tang; Xin Yao

This paper investigates the Periodic Capacitated Arc Routing Problem (PCARP), which is often encountered in the waste collection application. PCARP is an extension of the well-known Capacitated Arc Routing Problem (CARP) from a single period to a multi-period horizon. PCARP is a hierarchical optimization problem which has a primary objective (minimizing the number of vehicles ) and a secondary objective (minimizing the total cost ). An important factor that makes PCARP challenging is that its primary objective is little affected by existing operators and thus difficult to improve. We propose a new Memetic Algorithm (MA) for solving PCARP. The MA adopts a new solution representation scheme and a novel crossover operator. Most importantly, a Route-Merging (RM) procedure is devised and embedded in the algorithm to tackle the insensitive objective . The MA with RM (MARM) has been compared with existing meta-heuristic approaches on two PCARP benchmark sets and a real-world data set. The experimental results show that MARM obtained better solutions than the compared algorithms in much less time, and even updated the best known solutions of all the benchmark instances. Further study reveals that the RM procedure plays a key role in the superior performance of MARM.This paper investigates the Periodic Capacitated Arc Routing Problem (PCARP), which is often encountered in the waste collection application. PCARP is an extension of the well-known Capacitated Arc Routing Problem (CARP) from a single period to a multi-period horizon. PCARP is a hierarchical optimization problem which has a primary objective (minimizing the number of vehicles ) and a secondary objective (minimizing the total cost ). An important factor that makes PCARP challenging is that its primary objective is little affected by existing operators and thus difficult to improve. We propose a new Memetic Algorithm (MA) for solving PCARP. The MA adopts a new solution representation scheme and a novel crossover operator. Most importantly, a Route-Merging (RM) procedure is devised and embedded in the algorithm to tackle the insensitive objective . The MA with RM (MARM) has been compared with existing meta-heuristic approaches on two PCARP benchmark sets and a real-world data set. The experimental results show that MARM obtained better solutions than the compared algorithms in much less time, and even updated the best known solutions of all the benchmark instances. Further study reveals that the RM procedure plays a key role in the superior performance of MARM.


systems man and cybernetics | 2009

A Global Repair Operator for Capacitated Arc Routing Problem

Yi Mei; Ke Tang; Xin Yao

Capacitated arc routing problem (CARP) has attracted much attention during the last few years due to its wide applications in real life. Since CARP is NP-hard and exact methods are only applicable for small instances, heuristics and metaheuristic methods are widely adopted when solving CARP. This paper demonstrates one major disadvantage encountered by traditional search algorithms and proposes a novel operator named global repair operator (GRO) to address it. We further embed GRO in a recently proposed tabu search algorithm (TSA) and apply the resultant repair-based tabu search (RTS) algorithm to five well-known benchmark test sets. Empirical results suggest that RTS not only outperforms TSA in terms of quality of solutions but also converges to the solutions faster. Moreover, RTS is also competitive with a number of state-of-the-art approaches for CARP. The efficacy of GRO is thereby justified. More importantly, since GRO is not specifically designed for the referred TSA, it might be a potential tool for improving any existing method that adopts the same solution representation.


ACM Transactions on Mathematical Software | 2016

A Competitive Divide-and-Conquer Algorithm for Unconstrained Large-Scale Black-Box Optimization

Yi Mei; Mohammad Nabi Omidvar; Xiaodong Li; Xin Yao

This article proposes a competitive divide-and-conquer algorithm for solving large-scale black-box optimization problems for which there are thousands of decision variables and the algebraic models of the problems are unavailable. We focus on problems that are partially additively separable, since this type of problem can be further decomposed into a number of smaller independent subproblems. The proposed algorithm addresses two important issues in solving large-scale black-box optimization: (1) the identification of the independent subproblems without explicitly knowing the formula of the objective function and (2) the optimization of the identified black-box subproblems. First, a Global Differential Grouping (GDG) method is proposed to identify the independent subproblems. Then, a variant of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is adopted to solve the subproblems resulting from its rotation invariance property. GDG and CMA-ES work together under the cooperative co-evolution framework. The resultant algorithm, named CC-GDG-CMAES, is then evaluated on the CEC’2010 large-scale global optimization (LSGO) benchmark functions, which have a thousand decision variables and black-box objective functions. The experimental results show that, on most test functions evaluated in this study, GDG manages to obtain an ideal partition of the index set of the decision variables, and CC-GDG-CMAES outperforms the state-of-the-art results. Moreover, the competitive performance of the well-known CMA-ES is extended from low-dimensional to high-dimensional black-box problems.


congress on evolutionary computation | 2014

Effective decomposition of large-scale separable continuous functions for cooperative co-evolutionary algorithms

Mohammad Nabi Omidvar; Yi Mei; Xiaodong Li

In this paper we investigate the performance of cooperative co-evolutionary (CC) algorithms on large-scale fully-separable continuous optimization problems. We have shown that decomposition can have significant impact on the performance of CC algorithms. The empirical results show that the subcomponent size should be chosen small enough so that the subcomponent size is within the capacity of the subcomponent optimizer. In practice, determining the optimal size is difficult. Therefore, adaptive techniques are desired by practitioners. Here we propose an adaptive method, MLSoft, that uses widely-used techniques in reinforcement learning such as the value function method and softmax selection rule to adapt the subcomponent size during the optimization process. The experimental results show that MLSoft is significantly better than an existing adaptive algorithm called MLCC on a set of large-scale fully-separable problems.


soft computing | 2016

On investigation of interdependence between sub-problems of the Travelling Thief Problem

Yi Mei; Xiaodong Li; Xin Yao

In this paper, the interdependence between sub-problems in a complex overall problem is investigated using a benchmark problem called Travelling Thief Problem (TTP), which is a combination of Travelling Salesman Problem (TSP) and Knapsack Problem (KP). First, the analysis on the mathematical formulation shows that it is impossible to decompose the problem into independent sub-problems due to the non-linear relationship in the objective function. Therefore, the algorithm for TTP is not straightforward although each sub-problem alone has been investigated intensively. Then, two meta-heuristics are proposed for TTP. One is the Cooperative Co-evolution (CC) that solves the sub-problems separately and transfers the information between them in each generation. The other is the Memetic Algorithm (MA) that solves TTP as a whole. The comparative results showed that MA consistently obtained much better results than both the standard and dynamic versions of CC within comparable computational budget. This indicates the importance of considering the interdependence between sub-problems in an overall problem like TTP.


simulated evolution and learning | 2014

Improving Efficiency of Heuristics for the Large Scale Traveling Thief Problem

Yi Mei; Xiaodong Li; Xin Yao

The Traveling Thief Problem TTP is a novel problem that combines the well-known Traveling Salesman Problem TSP and Knapsack Problem KP. In this paper, the complexity of the local-search-based heuristics for solving TTP is analyzed, and complexity reduction strategies for TTP are proposed to speed up the heuristics. Then, a two-stage local search process with fitness approximation schemes is designed to further improve the efficiency of heuristics. Finally, an efficient Memetic Algorithm MA with the two-stage local search is proposed to solve the large scale TTP. The experimental results on the tested large scale TTP benchmark instances showed that the proposed MA can obtain competitive results within a very short time frame for the large scale TTP. This suggests the potential benefits of designing intelligent divide-and-conquer strategies that solves the sub-problems separately while taking the interdependence between them into account.

Collaboration


Dive into the Yi Mei's collaboration.

Top Co-Authors

Avatar

Mengjie Zhang

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Xin Yao

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Chen

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Su Nguyen

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Ke Tang

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hui Ma

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

Alexandre Sawczuk da Silva

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar

John Park

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge