Su-Youn Cho
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Su-Youn Cho.
Journal of The European Academy of Dermatology and Venereology | 2014
J.-S. Kang; Zhenlong Zheng; Min Ju Choi; S.H. Lee; D.Y. Kim; Su-Youn Cho
Background Mobilized CD34+ cells in peripheral blood have angiogenic potential, which is an important factor in active hair growth. In addition, activated autologous platelet‐rich plasma (PRP) has been reported to induce the proliferation of dermal papilla cells.
Biochemical and Biophysical Research Communications | 2009
Il-Young Paik; Myung-Hyun Jeong; Hwa-Eun Jin; Young-Il Kim; Ah-Ram Suh; Su-Youn Cho; Hee-Tae Roh; Chan-Ho Jin; Sang-Hoon Suh
To investigate the effects of hydration status on oxidative DNA damage and exercise performance, 10 subjects ran on a treadmill until exhaustion at 80% VO(2max) during four different trials [control (C), 3% dehydration (D), 3% dehydration+water (W) or 3% dehydration+sports drink (S)]. Dehydration significantly decreased exercise time to exhaustion (D<C and S). Plasma MDA levels were significantly higher at pre-exercise in D than C. Plasma TAS was significantly lower at pre-exercise in C and S than in D, and was significantly lower in S than D at 60min of recovery. Dehydration significantly increased oxidative DNA damage during exercise, but fluid replacement with water or sports drink alleviated it equally. These results suggest that (1) dehydration impairs exercise performance and increases DNA damage during exercise to exhaustion; and (2) fluid replacement prolongs exercise endurance and attenuates DNA damage.
Journal of The European Academy of Dermatology and Venereology | 2009
Su-Youn Cho; S.H. Lee; Su-Won Lee; Junghan Lee; D.H. Kim
References 1 Trafeli JP, Kwan JM, Meehan KJ et al. Use of a long-pulse alexandrite laser in the treatment of superficial pigmented lesions. Dermatol Surg 2007; 33: 1477–1482. 2 Ortonne JP, Pandya AG, Lui H, Hexsel D. Treatment of solar lentigines. J Am Acad Dermatol 2006; 54: S262–S271. 3 Raziee M, Balighi K, Shabanzadeh-Dehkordi H, Robati RM. Efficacy and safety of cryotherapy vs. trichloroacetic acid in the treatment of solar lentigo. J Eur Acad Dermatol Venereol 2008; 22: 316–319. 4 Rosenbach A, Lee SJ, Johr RH. Treatment of medium-brown solar lentigines using an alexandrite laser designed for hair reduction. Arch Dermatol 2002; 138: 547–548. 5 Kawada A, Shiraishi H, Asai M et al. Clinical improvement of solar lentigines and ephelides with an intense pulsed light source. Dermatol Surg 2002; 28: 504–508.
Journal of The European Academy of Dermatology and Venereology | 2014
Y.K. Kim; D.Y. Kim; Su-Won Lee; Woo-Suk Chung; Su-Youn Cho
Both ablative and non‐ablative laser devices have been used for the cosmetic treatment of seborrheic keratoses.
Molecules and Cells | 2009
Il-Young Paik; Chan-Ho Jin; Hwa-Eun Jin; Young-Il Kim; Su-Youn Cho; Hee-Tae Roh; Ah-Ram Suh; Sang-Hoon Suh
We examined the effects of the NADPH oxidase p22phox C242T polymorphism on endurance exercise performance and oxidative DNA damage in response to acute and chronic exercises. One hundred three subjects were recruited, among which 26 healthy subjects (CC: 12, TC: 12, and TT: 2) were studied during rest, exercise at 85% VO2max, and recovery before and after 8 weeks of tread-mill running. Lymphocyte DNA damage increased significantly in response to exercise (p < 0.05). There were no significant differences in plasma MDA, SOD concentrations and lymphocyte DNA damage between CC genotype and T allele group, but significant endurance training differences were observed. Endurance training increased exercise time to exhaustion in both the CC genotype and T allele groups (p < 0.05) but no significant difference was found between groups. The results of the current study with young, healthy, Korean men are interpreted to mean that 1) the majority had the CC genotype of the NADPH oxidase p22phox C242T polymorphism (82.5%: CC, 15.5%: TC, 1.9%: TT), 2) acute exercise increased lymphocyte DNA damage, 3) endurance training significantly increased exercise time to exhaustion, and alleviated lymphocyte DNA damage, and 4) The NADPH oxidase p22phox C242T polymorphism, however, did not alter lymphocyte DNA damage or exercise performance at rest, immediately after exercise, or during recovery.
International Journal of Sport Nutrition and Exercise Metabolism | 2017
Hee-Tae Roh; Su-Youn Cho; Hyung-Gi Yoon; Wi-Young So
We investigated the effects of aerobic exercise intensity on oxidative-nitrosative stress, neurotrophic factor expression, and blood-brain barrier (BBB) permeability. Fifteen healthy men performed treadmill running under low-intensity (LI), moderate-intensity (MI), and high-intensity (HI) conditions. Blood samples were collected immediately before exercise (IBE), immediately after exercise (IAE), and 60 min after exercise (60MAE) to examine oxidative-nitrosative stress (reactive oxygen species [ROS]; nitric oxide [NO]), neurotrophic factors (brain-derived neurotrophic factor [BDNF]; nerve growth factor [NGF]), and blood-brain barrier (BBB) permeability (S-100β; neuron-specific enolase). ROS concentration significantly increased IAE and following HI (4.9 ± 1.7 mM) compared with that after LI (2.8 ± 1.4 mM) exercise (p < .05). At 60MAE, ROS concentration was higher following HI (2.5 ± 1.2 mM) than after LI (1.5 ± 0.5 mM) and MI (1.4 ± 0.3 mM) conditions (p < .05). Plasma NO IAE increased significantly after MI and HI exercise (p < .05). Serum BDNF, NGF, and S-100b levels were significantly higher IAE following MI and HI exercise (p < .05). BDNF and S-100b were higher IAE following MI (29.6 ± 3.4 ng/mL and 87.1 ± 22.8 ng/L, respectively) and HI (31.4 ± 3.8 ng/mL and 100.6 ± 21.2 ng/L, respectively) than following LI (26.5 ± 3.0 ng/mL and 64.8 ± 19.2 ng/L, respectively) exercise (p < .05). 60MAE, S-100b was higher following HI (71.1 ± 14.5 ng/L) than LI (56.2 ± 14.7 ng/L) exercise (p < .05). NSE levels were not significantly different among all intensity conditions and time points (p > .05). Moderate- and/or high-intensity exercise may induce higher oxidative-nitrosative stress than may low-intensity exercise, which can increase peripheral neurotrophic factor levels by increasing BBB permeability.
International Journal of Environmental Research and Public Health | 2017
Su-Youn Cho; Wi-Young So; Hee-Tae Roh
Although regular Taekwondo (TKD) training has been reported to be effective for improving cognitive function in children, the mechanism underlying this improvement remains unclear. The purpose of the present study was to observe changes in neuroplasticity-related growth factors in the blood, assess cerebral blood flow velocity, and verify the resulting changes in children’s cognitive function after TKD training. Thirty healthy elementary school students were randomly assigned to control (n = 15) and TKD (n = 15) groups. The TKD training was conducted for 60 min at a rating of perceived exertion (RPE) of 11–15, 5 times per week, for 16 weeks. Brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) levels were measured by blood sampling before and after the training, and the cerebral blood flow velocities (peak systolic [MCAs], end diastolic [MCAd], mean cerebral blood flow velocities [MCAm], and pulsatility index [PI]) of the middle cerebral artery (MCA) were measured using Doppler ultrasonography. For cognitive function assessment, Stroop Color and Word Tests (Word, Color, and Color-Word) were administered along with other measurements. The serum BDNF, VEGF, and IGF-1 levels and the Color-Word test scores among the sub-factors of the Stroop Color and Word Test scores were significantly higher in the TKD group after the intervention (p < 0.05). On the other hand, no statistically significant differences were found in any factors related to cerebral blood flow velocities, or in the Word test and Color test scores (p > 0.05). Thus, 16-week TKD training did not significantly affect cerebral blood flow velocities, but the training may have been effective in increasing children’s cognitive function by inducing an increase in the levels of neuroplasticity-related growth factors.
Journal of Life Science | 2010
Il-Young Paik; Woe-Ryong Chang; Yi-Sub Kwak; Su-Youn Cho; Hwa-Eun Jin
The purpose of this study is to examine the effect of Prunus mume supplementation on changes of energy substrate (glucose, FFA) and fatigue factors (lactate, ammonia, phosphorous) in the performance of exercise. The subjects of this study were 15 male university students. The exercise test was performed for 30 minutes at 75% VO₂max on the treadmill and conducted both before and after administering Prunus mume for 6 weeks. Through Prunus mume supplemntation, the accumulation of such fatigue factors as lactate, ammonia, and phosphorous along with concentration of glucuse decreased, but the concentration of FFA increased. From the study, it can be seen that Prunus mume plays a positive role for the use of energy substrates and accumulated fatigue factors.
Journal of The European Academy of Dermatology and Venereology | 2018
J. Lee; H. Park; Hyun-Sun Yoon; J. Chung; Su-Youn Cho
Fibrosis is thought to be the main pathophysiology of scleroderma, and myofibroblasts play the main role in abnormal fibrotic pathologies. Altered distribution of dermal dendritic cells (DDCs) and vascular abnormalities has been reported to relate to the pathogenesis of scleroderma.
Journal of Men's Health | 2018
Dae-Eun Kim; Il-Young Paik; Su-Youn Cho; Jinhee Woo; Ju-Yong Bae; Hee-Tae Roh
Background and Objective This study aimed to investigate the effects of long-term aerobic exercise on muscle damage markers, lymphocyte DNA damage, and antioxidant system in amateur athletes. Material and Methods Eleven healthy men in their 30s and 40s without any medical illness, who did not smoke or drink, and had completed at least two amateur triathlon races (O2 and Olympic courses) were enrolled. They underwent physical examination and four blood sampling sessions: at rest, immediately after a race, during recovery (3 and 6 days after the race), and after completing an Olympic course. Blood sampling was performed using the same method one month later. Weight (kg) and saturation of peripheral oxygen (SpO2) were measured. Tail intensity, tail moment, and tail length, and levels of superoxide dismutase (SOD), creatine kinase (CK), and lactate dehydrogenase (LDH) were analyzed. Results First, the study found significant changes between the body weight at rest and immediately after the race (p<.001) and between those immediately after the race and 3 and 6 days after the race (p<.001) for both courses. Second, for both courses, SpO2 declined immediately after the race and tended to rise again during recovery, but the difference was not significant. Third, in the Olympic course, significant differences were found between lymphocyte tail moment ™ at rest and that immediately after the race (p<.01) and between those immediately after the race and 3 and 6 days after the race (p<.05, p<.01). In the O2 course, significant differences were found between lymphocyte TM at rest and that immediately after the race (p<.01), between those at rest and 3 days of recovery (p<.001), between those immediately after the race and 3 days of recovery (p<.001), between those at rest and 6 days of recovery (p<.01), and between those at 3 and 6 days after the race (p<.01). Both courses significantly differed in lymphocyte TM immediately after the race (p<.05). Fourth, significant differences were observed between serum SOD at rest and that immediately after the race (p<.05), between those at rest and 3 days after the race (p<.01) and in serum SOD between that immediately after the race and 6 days after the race (p<.05) in the Olympic course. In the O2 course, serum SOD at rest and those at 3 and 6 days after the race significantly differed (p<.05). The two courses differed in serum SOD at 3 days after the race (p<.05). Fifth, in both courses, compared with the levels at rest, serum CK concentrations immediately after the race (p<.001) and 3 and 6 days after the race significantly differed (p<.01, p<.001). In both courses, significant differences were observed between serum CK concentrations immediately after the race and those at 3 and 6 days after the race (p<.01, p<.001) and between those at 3 and 6 days after the race (p<.001). Both courses significantly differed in serum CK concentrations immediately after the race (p<.001) and those at 3 and 6 days after the race (p<.05). In the Olympic course, serum LDH concentrations between those at rest and immediately after the race (p<.001), between those at rest and 3 days of recovery (p<.01), and between those immediately after the race and 3 and 6 days after the race showed significant differences (p<.001). In the O2 course, significant differences were found between serum LDH at rest and that immediately after the race (p<.001), between those at rest and 3 and 6 days after the race (p<.01, p<.001), between those immediately after the race and 3 and 6 days after the race (p<.001), and between those at 3 and 6 days after the race (p<.001). The two courses significantly differed in serum LDH levels immediately after the race (p<.001) and those at 3 and 6 days after the race (p<.05). Conclusion Triathlon, which involves long-term high-intensity aerobic exercise, leads to temporary weight loss, DNA damage, and muscle damage after the race, and such changes are affected by exercise duration and intensity. During this change, defense mechanisms, including the antioxidant defense mechanism, are thought to protect the body from DNA and muscle damage.