Suat Uçar
Dokuz Eylül University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suat Uçar.
Bioresource Technology | 2008
Selhan Karagöz; Turgay Tay; Suat Uçar; Murat Erdem
Preparation of the activated carbons from sunflower oil cake by sulphuric acid activation with different impregnation ratios was carried out. Laboratory prepared activated carbons were used as adsorbents for the removal of methylene blue (MB) from aqueous solutions. Liquid-phase adsorption experiments were conducted and the maximum adsorption capacity of each activated carbon was determined. The effects of various process parameters i.e., temperature, pH, initial methylene blue concentration, contact time on the adsorption capacity of each activated carbon were investigated. The kinetic models for MB adsorption onto the activated carbons were studied. Langmuir isotherm showed better fit than Freundlich isotherm for all activated carbon samples. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The separation factor (R(L)) revealed the favorable nature of the isotherm of the MB activated carbon system.
Journal of Hazardous Materials | 2009
Turgay Tay; Suat Uçar; Selhan Karagöz
Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the pyrolysis of soybean oil cake at 600 and 800 degrees C by chemical activation with K(2)CO(3) and KOH. The influence of temperature and type of chemical reagents on the porosity development was investigated and discussed. K(2)CO(3) was found more effective than KOH as a chemical reagent under identical conditions in terms of both porosity development and yields of the activated carbons. The maximum surface area (1352.86 m(2)g(-1)) was obtained at 800 degrees C with K(2)CO(3) activation which lies in the range of commercial activated carbons. Elemental analyses of the activated carbons indicate insignificant sulphur content for all activated carbons. The ash and sulphur contents of the activated carbons obtained with chemical activation by K(2)CO(3) were lower than those by chemical activation with KOH.
Bioresource Technology | 2011
Gozde Duman; Cagdas Okutucu; Suat Uçar; Ralph Stahl; Jale Yanik
The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock.
Bioresource Technology | 2008
Suat Uçar; Ahmet R. Ozkan
The main aim of this study was to investigate the composition of products from the pyrolysis of rapeseed oil cake in a fixed bed reactor at 400, 450, 500, 700 and 900 degrees C. The gas products mainly consisted of CO(2), CO, CH(4) and H(2)S at 500 degrees C. Empirical formula of bio-oil from the pyrolysis of rapeseed oil cake was CH(1.59)O(0.16)N(0.116)S(0.003) for 500 degrees C. Bio-oils mainly contained oleic acid, 1H-indole, 2,3,5-trimethoxy toluene, toluene, (Z)-9-octadecanamide, psoralene, phenol and phenol derivatives at all pyrolysis temperatures. Both non-aromatic and aromatic hydrocarbon compounds were determined in water phase of liquid product by Headspace-GC analysis. The heating values of bio-chars were found to be similar (24MJkg(-1)) at all pyrolysis temperatures.
Fuel | 2003
Selhan Karagöz; Tamer Karayıldırım; Suat Uçar; Mithat Yüksel; Jale Yanik
Co-processing of municipal waste plastics (MWP) with vacuum gas oil (VGO) over HZSM-5, DHC-8 (commercial silica –alumina catalyst) and cobalt loaded active carbon catalyst has been comparatively studied. Co-processing experiments were carried out under hydrogen atmosphere at temperatures between 425 and 450 8C. The composition, sulphur and chlorine amount of liquid products were determined. The product distribution and the composition of liquids were changed depending upon the temperature and the catalyst type. As expected temperature led to increase in cracking activity of catalysts. DHC-8 and HZSM-5 showed substantially different activities in coprocessing due to the difference in their acidity. HZSM-5 gave highest gas yield at all temperatures and highest liquid yield (38.3) at low temperature. Although Co-AC was a neutral catalyst, it showed the cracking activity as well as HZSM-5 and more than DHC-8. No chlorine compound was observed in liquid products. The sulphur amount in liquid products varied with the catalyst type. Although HZSM-5 showed good cracking activity at low temperatures, it gave the liquid product containing highest sulphur amount. By considering both the quantity and quality of liquid fuel obtained from co-processing, it may be concluded that Co-AC gave the best result in the co-processing of the MWP/VGO blend. To observe the effect of metal type loaded on active carbon on catalyst activity, a series of co-processing experiments was also carried out. q 2002 Published by Elsevier Science Ltd.
Journal of Hazardous Materials | 2010
Ali Sınağ; Selen Gülbay; Burçin Uskan; Suat Uçar; Sara Bilge Özgürler
The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.
Fuel Processing Technology | 2001
Tamer Karayıldırım; Jale Yanik; Suat Uçar; Mehmet Sağlam; Mithat Yüksel
Abstract A blend containing 20 wt.% low density polyethylene (PE) and 5 wt.% polyvinylchloride (PVC) in heavy vacuum gas oil was pyrolyzed at 623 K (dechlorination step). This mixture was then thermally and catalytically cracked in the presence of hydrogen at 673–723 K in a batch reactor (hydrocracking step). The liquid products from hydrocracking contained no chlorine compounds although the chlorine amount in the dechlorinated mixture was 700 ppm. Experiments have shown that the dechlorination step and the temperature had great effect on the product distribution from the hydrocracking step. It was observed that the dechlorination step led to both degradation of PE and dechlorination of PVC and that PE could be completely cracked with/without a catalyst by hydrocracking even though at 673 K. The use of a catalyst decreased the gas yield and led to an increase in coke yield at 723 K. The effect of the catalyst on the boiling point range of liquid product obtained from hydrocracking depended on the reaction temperature. The chlorine compounds in dechlorinated mixture affected the catalytic activity of the catalyst especially at 723 K. 75% and 55% of the liquid products obtained at 723 K with and without a catalyst, respectively, were hydrocarbons having boiling points ranging from 323 to 473K.
Waste Management | 2016
Ismail Cem Kantarli; Arzu Kabadayi; Suat Uçar; Jale Yanik
In this study, conversion of wastes from poultry farming and industry into biochar and bio-oil via thermochemical processes was investigated. Fuel characteristics and chemical structure of biochars and bio-oils have been investigated using standard fuel analysis and spectroscopic methods. Biochars were produced from poultry litter through both hydrothermal carbonization (sub-critical water, 175-250°C) and pyrolysis over a temperature range between 250 and 500°C. In comparison to hydrothermal carbonization, pyrolysis at lower temperatures produced biochar with greater energy yield due to the higher mass yield. Biochars obtained by both processes were comparable to coal. Hydrothermal liquefaction of poultry meal at different temperatures (200-325°C) was conducted and compared to optimize its process conditions. Higher temperatures favored the formation of bio-crude oil, with a maximum yield of 35wt.% at 300°C. The higher heating values of bio-oils showed that bio-oil could be a potential source of synthetic fuels. However, elemental analysis demonstrated the high nitrogen content of bio-oils. Therefore, bio-oils obtained from hydrothermal liquefaction of poultry meal should be upgraded for utilization as a transport and heating fuel.
The Scientific World Journal | 2013
Murat Erdem; Suat Uçar; Selhan Karagöz; Turgay Tay
The removal of lead (II) ions from aqueous solutions was carried out using an activated carbon prepared from a waste biomass. The effects of various parameters such as pH, contact time, initial concentration of lead (II) ions, and temperature on the adsorption process were investigated. Energy Dispersive X-Ray Spectroscopy (EDS) analysis after adsorption reveals the accumulation of lead (II) ions onto activated carbon. The Langmuir and Freundlich isotherm models were applied to analyze equilibrium data. The maximum monolayer adsorption capacity of activated carbon was found to be 476.2 mg g−1. The kinetic data were evaluated and the pseudo-second-order equation provided the best correlation. Thermodynamic parameters suggest that the adsorption process is endothermic and spontaneous.
Energy Sources Part A-recovery Utilization and Environmental Effects | 2007
Suat Uçar; Selhan Karagöz; Jale Yanik; Mithat Yüksel; Mehmet Sağlam
Abstract Scrap tire derived oils were upgraded over metal-loaded activated carbon catalysts and commercial catalyst at different operating conditions. Activated carbon support was prepared from the pyrolytic carbon black from pyrolysis of scrap tires. Activated carbon catalysts contained the metal pairs of Co-Ni, Co-Mo, and Ni-Mo. All metal-loaded activated carbon catalysts showed similar catalytic activity for upgrading process at 350°C under hydrogen pressure of 7 MPa. However, Ni-Mo/Ac showed good catalytic activity. Liquid fuels from upgrading oils over Ni-Mo/Ac and commercial catalyst containing 45–55% of naphtha fraction, 20–25% of kerosene fraction was obtained 350°C under hydrogen pressure of 7 MPa.