Turgay Tay
Anadolu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Turgay Tay.
Bioresource Technology | 2008
Selhan Karagöz; Turgay Tay; Suat Uçar; Murat Erdem
Preparation of the activated carbons from sunflower oil cake by sulphuric acid activation with different impregnation ratios was carried out. Laboratory prepared activated carbons were used as adsorbents for the removal of methylene blue (MB) from aqueous solutions. Liquid-phase adsorption experiments were conducted and the maximum adsorption capacity of each activated carbon was determined. The effects of various process parameters i.e., temperature, pH, initial methylene blue concentration, contact time on the adsorption capacity of each activated carbon were investigated. The kinetic models for MB adsorption onto the activated carbons were studied. Langmuir isotherm showed better fit than Freundlich isotherm for all activated carbon samples. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The separation factor (R(L)) revealed the favorable nature of the isotherm of the MB activated carbon system.
Journal of Hazardous Materials | 2009
Turgay Tay; Suat Uçar; Selhan Karagöz
Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the pyrolysis of soybean oil cake at 600 and 800 degrees C by chemical activation with K(2)CO(3) and KOH. The influence of temperature and type of chemical reagents on the porosity development was investigated and discussed. K(2)CO(3) was found more effective than KOH as a chemical reagent under identical conditions in terms of both porosity development and yields of the activated carbons. The maximum surface area (1352.86 m(2)g(-1)) was obtained at 800 degrees C with K(2)CO(3) activation which lies in the range of commercial activated carbons. Elemental analyses of the activated carbons indicate insignificant sulphur content for all activated carbons. The ash and sulphur contents of the activated carbons obtained with chemical activation by K(2)CO(3) were lower than those by chemical activation with KOH.
Zeitschrift für Naturforschung C | 2004
Turgay Tay; Ayşen Özdemir Türk; Meral Yılmaz; Hayrettin Türk; Merih Kivanç
The acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid constituent showed antimicrobial activity against Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Staphylococcus aureus, Streptococcus faecalis. Yersinia enterocolitica, Candida albicans, and Candida glabrata. Norstictic acid was active against Aeromonas hydrophila as well as the above microorganisms except Yersinia enterocolitica. Protocetraric acid showed activity only against the tested yeasts Candida albicans and Candida glabrata. The MIC values of the extract as well as of the three substances were determined. No antifungal activity of the acetone extract has been observed against ten filamentous fungi.
Zeitschrift für Naturforschung C | 2004
Meral Yılmaz; Ayşen Özdemir Türk; Turgay Tay; Merih Kivanç
The antimicrobial activity of the chloroform, diethyl ether, acetone, petroleum ether, and ethanol extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents against 9 bacteria and fungi has been investigated. The extracts and pure compounds alone were found active against the same bacteria and the same yeasts. Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Proteus vulgaris, Listeria monocytogenes, Aeromonas hydrophila, Candida albicans, and Candida glabrata growth were inhibited. In addition, the MICs of the extracts, (-)-usnic acid, atranorin and fumarprotocetraric acid were determined.
Zeitschrift für Naturforschung C | 2006
Hayrettin Türk; Meral Yılmaz; Turgay Tay; Ayşen Özdemir Türk; Merih Kivanç
The antimicrobial activity and the MIC values of the ethanol, chloroform, diethyl ether, and acetone extracts of the chemical races of Pseudevernia furfuracea (var. furfuracea and var. ceratea) and their physodic acid, chloroatranorin, atranorin, and olivetoric acid constituents have been investigated against some microorganisms. Nearly all extracts of both chemical races showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Staphylococcus aureus, Streptococcus faecalis, Yersinia enterocolitica, Candida albicans, Candida glabrata, Alternaria alternata, Ascochyta rabiei, Aspergillus niger, Fusarium culmorum, Fusarium moniliforme, Fusarium oxysporum, Fusarium solani, and Penicillium notatum. There was no antimicrobial activity of the extracts against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Pseudomonas syringae, Salmonella typhimurium, Alternaria citri, Alternaria tenuissima, and Gaeumannomyces graminis. Chloroatranorin and olivetoric acid were active against the same microorganisms with few exceptions. Physodic acid was active against about the same bacteria and yeasts and inactive against all of the filamentous fungi tested. Also no activity of atranorin against the filamentous fungi was observed.
Zeitschrift für Naturforschung C | 2007
Mehmet Candan; Meral Yılmaz; Turgay Tay; Murat Erdem; Ayşen Özdemir Türk
The antimicrobial activity of the acetone, chloroform, diethyl ether, methanol, and petroleum ether extracts of the lichen Parmelia sulcata and its salazinic acid constituent have been screened against twenty eight food-borne bacteria and fungi. All of the extracts with the exception of the petroleum ether extract showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Listeria monocytogenes, Proteus vulgaris, Yersinia enterocolitica, Staphylococcus aureus, Streptococcus faecalis, Candida albicans, Candida glabrata, Aspergillus niger, Aspergillus fumigatus, and Penicillium notatum. Salazinic acid did not show antimicrobial activity against L. monocytogenes, P. vulgaris, Y. enterocolitica, and S. faecalis but showed activity against Pseudomonas aeruginosa and Salmonella typhimurium as well. The MIC values of the extracts and the acid for the bacteria and fungi have also been determined
Phytotherapy Research | 2009
A. Tansu Koparal; Gönül Ulus; Melih Zeytinoglu; Turgay Tay; Ayşen Özdemir Türk
Lichens have been used in folk medicine for centuries and are symbiotic organisms of fungi and algae that produce unique secondary metabolites. Olivetoric acid is one of these secondary metabolites. In the present study, the effect of olivetoric acid isolated from acetone extract of the lichen Pseudevernia furfuracea (var. ceratea) on angiogenesis was evaluated. It displayed potent anti‐angiogenic activities in vitro: inhibited proliferation of rat adipose tissue endothelial cells (RATECs) and disrupted endothelial tube formation in a dose‐dependent manner. Furthermore, dose‐dependent depolymerization effects of olivetoric acid on F‐actin stress fibers were observed. Decrease in the tube formation of RATECs by olivetoric acid might be explained by a disorganization of the actin cytoskeleton. These findings suggest that olivetoric acid is a new anti‐angiogenic agent and can be developed as a new therapeutic agent for angiogenesis‐related diseases. Copyright
Journal of Colloid and Interface Science | 2009
Murat Erdem; Erdinç Yüksel; Turgay Tay; Yasemin Çimen; Hayrettin Türk
The polymeric adsorbents were synthesized from 2-dimethylaminoethyl methacrylate (DMA) and [2-(methacryloyloxy)ethyl]dimethylhexadecylammonium bromide (DMAC(16)) monomers in the presence of ethylene glycol dimethacrylate (EDMA) cross-linking monomer using suspension polymerization technique and their adsorption efficiencies in the removal of p-nitrophenol from aqueous solutions were investigated. DMAC(16) monomer was prepared by means of modification of DMA monomer with 1-bromohexadecane. Adsorption experiments were carried out in a batch system and the experimental parameters were evaluated with respect to pH, agitation time, temperature and initial p-nitrophenol concentration. It was observed that the adsorbent poly[2-(methacryloyloxy)ethyl]dimethylhexadecylammonium bromide (p-DMAC(16)) prepared from DMAC(16) monomer was more effective in the removal of p-nitrophenol than the adsorbent poly(2-dimethylaminoethyl methacrylate) (p-DMA) prepared from DMA monomer. The effective pH ranges for the adsorption of p-nitrophenol onto p-DMAC(16) and p-DMA were 2-12 and 3-9, respectively. Langmuir and Freundlich adsorption models were used to describe the isotherms and find isotherm constants. The Langmuir model was well agreed with experimental data for both adsorbents. The pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models were used to understand the mechanism of the adsorption process and it fitted very well the pseudo-second-order kinetic model for each adsorbent. Thermodynamic parameters such as activation energy and changes of free energy, enthalpy, and entropy were also evaluated for the adsorption of p-nitrophenol onto each adsorbent. Additionally, reusability of the adsorbents was investigated and the results showed that both adsorbents can be employed many times without a significant loss in their adsorption capacities for the removal of p-nitrophenol from water.
Zeitschrift für Naturforschung C | 2005
Meral Yılmaz; Turgay Tay; Merih Kivanç; Hayrettin Türk; Ayşen Özdemir Türk
The antimicrobial activity and the MIC values of the diethyl ether, acetone, chloroform, petroleum ether, and ethanol extracts of the lichen Hypogymnia tubulosa and its 3-hydroxyphysodic acid constituent have been investigated against some microorganisms. At least one of the extracts or 3-hydroxyphysodic acid showed antimicrobial activity against Aeromonas hydrophila, Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Proteus vulgaris, Salmonella typhimurium, Staphylococcus aureus, Streptococcus faecalis, and Candida albicans. No antifungal activity of the extracts has been observed against ten filamentous fungi.
Brazilian Journal of Chemical Engineering | 2010
Meral Yılmaz; Turgay Tay; Merih Kivanç; Hayrettin Türk
Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attained at pH 5.0 and 6.0. Temperature variation between 20°C and 40°C did not affect the biosorption capacity of the bacterial biomass. The highest copper(II) ion removal capacity was 106.4 mg per g dry biomass. The correlation regression coefficients show that the biosorption process can be well defined by the Freundlich equation. The change in biosorption capacity with time was found to fit a pseudo-second-order equation.