Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subhashinie Kariyawasam is active.

Publication


Featured researches published by Subhashinie Kariyawasam.


Journal of Bacteriology | 2007

The Genome Sequence of Avian Pathogenic Escherichia coli Strain O1:K1:H7 Shares Strong Similarities with Human Extraintestinal Pathogenic E. coli Genomes

Timothy J. Johnson; Subhashinie Kariyawasam; Yvonne Wannemuehler; Paul Mangiamele; Sara J. Johnson; Curt Doetkott; Jerod A. Skyberg; Aaron M. Lynne; James R. Johnson; Lisa K. Nolan

Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1s genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.


Infection and Immunity | 2010

Avian-Pathogenic Escherichia coli Strains Are Similar to Neonatal Meningitis E. coli Strains and Are Able To Cause Meningitis in the Rat Model of Human Disease

Kelly A. Tivendale; Catherine M. Logue; Subhashinie Kariyawasam; Dianna M. Jordan; Ashraf Hussein; Ganwu Li; Yvonne Wannemuehler; Lisa K. Nolan

ABSTRACT Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avian-pathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APECs ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.


Applied and Environmental Microbiology | 2011

Subtyping Salmonella enterica Serovar Enteritidis Isolates from Different Sources by Using Sequence Typing Based on Virulence Genes and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)

Fenyun Liu; Subhashinie Kariyawasam; Bhushan M. Jayarao; Rodolphe Barrangou; Peter Gerner-Smidt; Efrain M. Ribot; Stephen J. Knabel; Edward G. Dudley

ABSTRACT Salmonella enterica subsp. enterica serovar Enteritidis is a major cause of food-borne salmonellosis in the United States. Two major food vehicles for S. Enteritidis are contaminated eggs and chicken meat. Improved subtyping methods are needed to accurately track specific strains of S. Enteritidis related to human salmonellosis throughout the chicken and egg food system. A sequence typing scheme based on virulence genes (fimH and sseL) and clustered regularly interspaced short palindromic repeats (CRISPRs)—CRISPR-including multi-virulence-locus sequence typing (designated CRISPR-MVLST)—was used to characterize 35 human clinical isolates, 46 chicken isolates, 24 egg isolates, and 63 hen house environment isolates of S. Enteritidis. A total of 27 sequence types (STs) were identified among the 167 isolates. CRISPR-MVLST identified three persistent and predominate STs circulating among U.S. human clinical isolates and chicken, egg, and hen house environmental isolates in Pennsylvania, and an ST that was found only in eggs and humans. It also identified a potential environment-specific sequence type. Moreover, cluster analysis based on fimH and sseL identified a number of clusters, of which several were found in more than one outbreak, as well as 11 singletons. Further research is needed to determine if CRISPR-MVLST might help identify the ecological origins of S. Enteritidis strains that contaminate chickens and eggs.


Infection and Immunity | 2010

Sequence Analysis and Characterization of a Transferable Hybrid Plasmid Encoding Multidrug Resistance and Enabling Zoonotic Potential for Extraintestinal Escherichia coli

Timothy J. Johnson; Dianna M. Jordan; Subhashinie Kariyawasam; Adam L. Stell; Nathan P. Bell; Yvonne Wannemuehler; Claudia Fernández Alarcón; Ganwu Li; Kelly A. Tivendale; Catherine M. Logue; Lisa K. Nolan

ABSTRACT ColV plasmids of extraintestinal pathogenic Escherichia coli (ExPEC) encode a variety of fitness and virulence factors and have long been associated with septicemia and avian colibacillosis. These plasmids are found significantly more often in ExPEC, including ExPEC associated with human neonatal meningitis and avian colibacillosis, than in commensal E. coli. Here we describe pAPEC-O103-ColBM, a hybrid RepFIIA/FIB plasmid harboring components of the ColV pathogenicity island and a multidrug resistance (MDR)-encoding island. This plasmid is mobilizable and confers the ability to cause septicemia in chickens, the ability to cause bacteremia resulting in meningitis in the rat model of human disease, and the ability to resist the killing effects of multiple antimicrobial agents and human serum. The results of a sequence analysis of this and other ColV plasmids supported previous findings which indicated that these plasmid types arose from a RepFIIA/FIB plasmid backbone on multiple occasions. Comparisons of pAPEC-O103-ColBM with other sequenced ColV and ColBM plasmids indicated that there is a core repertoire of virulence genes that might contribute to the ability of some ExPEC strains to cause high-level bacteremia and meningitis in a rat model. Examination of a neonatal meningitis E. coli (NMEC) population revealed that approximately 58% of the isolates examined harbored ColV-type plasmids and that 26% of these plasmids had genetic contents similar to that of pAPEC-O103-ColBM. The linkage of the ability to confer MDR and the ability contribute to multiple forms of human and animal disease on a single plasmid presents further challenges for preventing and treating ExPEC infections.


Foodborne Pathogens and Disease | 2009

Examination of the Source and Extended Virulence Genotypes of Escherichia coli Contaminating Retail Poultry Meat

Timothy J. Johnson; Catherine M. Logue; Yvonne Wannemuehler; Subhashinie Kariyawasam; Curt Doetkott; Chitrita DebRoy; David G. White; Lisa K. Nolan

Extraintestinal pathogenic Escherichia coli (ExPEC) are major players in human urinary tract infections, neonatal bacterial meningitis, and sepsis. Recently, it has been suggested that there might be a zoonotic component to these infections. To determine whether the E. coli contaminating retail poultry are possible extraintestinal pathogens, and to ascertain the source of these contaminants, they were assessed for their genetic similarities to E. coli incriminated in colibacillosis (avian pathogenic E. coli [APEC]), E. coli isolated from multiple locations of apparently healthy birds at slaughter, and human ExPEC. It was anticipated that the retail poultry isolates would most closely resemble avian fecal E. coli since only apparently healthy birds are slaughtered, and fecal contamination of carcasses is the presumed source of meat contamination. Surprisingly, this supposition proved incorrect, as the retail poultry isolates exhibited gene profiles more similar to APEC than to fecal isolates. These isolates contained a number of ExPEC-associated genes, including those associated with ColV virulence plasmids, and many belonged to the B2 phylogenetic group, known to be virulent in human hosts. Additionally, E. coli isolated from the crops and gizzards of apparently healthy birds at slaughter also contained a higher proportion of ExPEC-associated genes than did the avian fecal isolates examined. Such similarities suggest that the widely held beliefs about the sources of poultry contamination may need to be reassessed. Also, the presence of ExPEC-like clones on retail poultry meat means that we cannot yet rule out poultry as a source of ExPEC human disease.


Infection and Immunity | 2006

The pap Operon of Avian Pathogenic Escherichia coli Strain O1:K1 Is Located on a Novel Pathogenicity Island

Subhashinie Kariyawasam; Timothy J. Johnson; Lisa K. Nolan

ABSTRACT We have identified a 56-kb pathogenicity island (PAI) in avian pathogenic Escherichia coli strain O1:K1 (APEC-O1). This PAI, termed PAI IAPEC-O1, is integrated adjacent to the 3′ end of the pheV tRNA gene. It carries putative virulence genes of APEC (pap operon), other E. coli genes (tia and ireA), and a 1.5-kb region unique to APEC-O1. The kps gene cluster required for the biosynthesis of polysialic acid capsule was mapped to a location immediately downstream of this PAI.


BMC Genomics | 2011

Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens

Erin E. Sandford; Megan Orr; Emma Balfanz; Nathaniel C. Bowerman; Xianyao Li; Huaijun Zhou; Timothy J. Johnson; Subhashinie Kariyawasam; Peng Liu; Lisa K. Nolan; Susan J. Lamont

BackgroundAvian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level.ResultsThere were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast.ConclusionsMore severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.


Infection and Immunity | 2010

AatA Is a Novel Autotransporter and Virulence Factor of Avian Pathogenic Escherichia coli

Ganwu Li; Yaping Feng; Subhashinie Kariyawasam; Kelly A. Tivendale; Yvonne Wannemuehler; Fanghong Zhou; Catherine M. Logue; Cathy L. Miller; Lisa K. Nolan

ABSTRACT Autotransporters (AT) are widespread in Gram-negative bacteria, and many of them are involved in virulence. An open reading frame (APECO1_O1CoBM96) encoding a novel AT was located in the pathogenicity island of avian pathogenic Escherichia coli (APEC) O1s virulence plasmid, pAPEC-O1-ColBM. This 3.5-kb APEC autotransporter gene (aatA) is predicted to encode a 123.7-kDa protein with a 25-amino-acid signal peptide, an 857-amino-acid passenger domain, and a 284-amino-acid β domain. The three-dimensional structure of AatA was also predicted by the threading method using the I-TASSER online server and then was refined using four-body contact potentials. Molecular analysis of AatA revealed that it is translocated to the cell surface, where it elicits antibody production in infected chickens. Gene prevalence analysis indicated that aatA is strongly associated with E. coli from avian sources but not with E. coli isolated from human hosts. Also, AatA was shown to enhance adhesion of APEC to chicken embryo fibroblast cells and to contribute to APEC virulence.


Antimicrobial Agents and Chemotherapy | 2013

Antibiotic Resistance in Salmonella enterica Serovar Typhimurium Associates with CRISPR Sequence Type

Michael DiMarzio; Nikki Shariat; Subhashinie Kariyawasam; Rodolphe Barrangou; Edward G. Dudley

ABSTRACT Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of food-borne salmonellosis in the United States. The number of antibiotic-resistant isolates identified in humans is steadily increasing, suggesting that the spread of antibiotic-resistant strains is a major threat to public health. S. Typhimurium is commonly identified in a wide range of animal hosts, food sources, and environments, but little is known about the factors mediating the spread of antibiotic resistance in this ecologically complex serovar. Previously, we developed a subtyping method, CRISPR–multi-virulence-locus sequence typing (MVLST), which discriminates among strains of several common S. enterica serovars. Here, CRISPR-MVLST identified 22 sequence types within a collection of 76 S. Typhimurium isolates from a variety of animal sources throughout central Pennsylvania. Six of the sequence types were identified in more than one isolate, and we observed statistically significant differences in resistance among these sequence types to 7 antibiotics commonly used in veterinary and human medicine, such as ceftiofur and ampicillin (P < 0.05). Importantly, five of these sequence types were subsequently identified in human clinical isolates, and a subset of these isolates had identical antibiotic resistance patterns, suggesting that these subpopulations are being transmitted through the food system. Therefore, CRISPR-MVLST is a promising subtyping method for monitoring the farm-to-fork spread of antibiotic resistance in S. Typhimurium.


PLOS Pathogens | 2013

A Novel Two-Component Signaling System Facilitates Uropathogenic Escherichia coli's Ability to Exploit Abundant Host Metabolites

Wentong Cai; Yvonne Wannemuehler; Giuseppe Dell'Anna; Bryon A. Nicholson; Nicolle Lima Barbieri; Subhashinie Kariyawasam; Yaping Feng; Catherine M. Logue; Lisa K. Nolan; Ganwu Li

Two-component signaling systems (TCSs) are major mechanisms by which bacteria adapt to environmental conditions. It follows then that TCSs would play important roles in the adaptation of pathogenic bacteria to host environments. However, no pathogen-associated TCS has been identified in uropathogenic Escherichia coli (UPEC). Here, we identified a novel TCS, which we termed KguS/KguR (KguS: α-ketoglutarate utilization sensor; KguR: α-ketoglutarate utilization regulator) in UPEC CFT073, a strain isolated from human pyelonephritis. kguS/kguR was strongly associated with UPEC but was found only rarely among other E. coli including commensal and intestinal pathogenic strains. An in vivo competition assay in a mouse UTI model showed that deletion of kguS/kguR in UPEC CFT073 resulted in a significant reduction in its colonization of the bladders and kidneys of mice, suggesting that KguS/KguR contributed to UPEC fitness in vivo. Comparative proteomics identified the target gene products of KguS/KguR, and sequence analysis showed that TCS KguS/KguR and its targeted-genes, c5032 to c5039, are encoded on a genomic island, which is not present in intestinal pathogenic E. coli. Expression of the target genes was induced by α-ketoglutarate (α-KG). These genes were further shown to be involved in utilization of α-KG as a sole carbon source under anaerobic conditions. KguS/KguR contributed to the regulation of the target genes with the direct regulation by KguR verified using an electrophoretic mobility shift assay. In addition, oxygen deficiency positively modulated expression of kguS/kguR and its target genes. Taken altogether, this study describes the first UPEC-associated TCS that functions in controlling the utilization of α-ketoglutarate in vivo thereby facilitating UPEC adaptation to life inside the urinary tract.

Collaboration


Dive into the Subhashinie Kariyawasam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chitrita DebRoy

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Bhushan M. Jayarao

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ganwu Li

Iowa State University

View shared research outputs
Top Co-Authors

Avatar

Edward G. Dudley

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Eva Wallner-Pendleton

University of Nebraska–Lincoln

View shared research outputs
Researchain Logo
Decentralizing Knowledge