Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Subir K. NagDas is active.

Publication


Featured researches published by Subir K. NagDas.


Journal of Biological Chemistry | 2007

Apolipoprotein E Receptor-2 (ApoER2) Mediates Selenium Uptake from Selenoprotein P by the Mouse Testis

Gary E. Olson; Virginia P. Winfrey; Subir K. NagDas; Kristina E. Hill; Raymond F. Burk

Selenium is a micronutrient that is essential for the production of normal spermatozoa. The selenium-rich plasma protein selenoprotein P (Sepp1) is required for maintenance of testis selenium and for fertility of the male mouse. Sepp1 trafficking in the seminiferous epithelium was studied using conventional methods and mice with gene deletions. Immunocytochemistry demonstrated that Sepp1 is present in vesicle-like structures in the basal region of Sertoli cells, suggesting that the protein is taken up intact. Sepp1 affinity chromatography of a testicular extract followed by mass spectrometry-based identification of bound proteins identified apolipoprotein E receptor 2 (ApoER2) as a candidate testis Sepp1 receptor. In situ hybridization analysis identified Sertoli cells as the only cell type in the seminiferous epithelium with detectable ApoER2 expression. Testis selenium levels in apoER2-/- males were sharply reduced from those in apoER2+/+ males and were comparable with the depressed levels found in Sepp1-/- males. However, liver selenium levels were unchanged by deletion of apoER2. Immunocytochemistry did not detect Sepp1 in the Sertoli cells of apoER2-/- males, consistent with a defect in the receptor-mediated Sepp1 uptake pathway. Phase contrast microscopy revealed identical sperm defects in apoER2-/- and Sepp1-/- mice. Co-immunoprecipitation analysis demonstrated an interaction of testis ApoER2 with Sepp1. These data demonstrate that Sertoli cell ApoER2 is a Sepp1 receptor and a component of the selenium delivery pathway to spermatogenic cells.


Journal of Biological Chemistry | 2001

A Role for Poly(ADP-ribose) Polymerase in the Transcriptional Regulation of the Melanoma Growth Stimulatory Activity (CXCL1) Gene Expression

Chaitanya S. Nirodi; Subir K. NagDas; Steven P. Gygi; Gary E. Olson; Ruedi Aebersold; Ann Richmond

The melanoma growth stimulatory activity/growth-regulated protein, CXCL1, is constitutively expressed at high levels during inflammation and progression of melanocytes into malignant melanoma. It has been shown previously that CXCL1 overexpression in melanoma cells is due to increased transcription as well as stability of the CXCL1 message. The transcription ofCXCL1 is regulated through several cis-acting elements including Sp1, NF-κB, HMGI(Y), and the immediate upstream region (IUR) element (nucleotides −94 to −78), which lies immediately upstream to the nuclear factor κB (NF-κB) element. Previously, it has been shown that the IUR is necessary for basal and cytokine-induced transcription of the CXCL1 gene. UV cross-linking and Southwestern blot analyses indicate that the IUR oligonucleotide probe selectively binds a 115-kDa protein. In this study, the IUR element has been further characterized. We show here that proximity of the IUR element to the adjacent NF-κB element is critical to its function as a positive regulatory element. Using binding site oligonucleotide affinity chromatography, we have selectively purified the 115-kDa IUR-F. Mass spectrometry/mass spectrometry/matrix-assisted laser desorption ionization/time of flight spectroscopy and amino acid analysis as well as microcapillary reverse phase chromatography electrospray ionization tandem mass spectrometry identified this protein as the 114-kDa poly(ADP-ribose) polymerase (PARP1). Furthermore, 3-aminobenzamide, an inhibitor of PARP-specific ADP-ribosylation, inhibits CXCL1 promoter activity and reduces levels of CXCL1 mRNA. The data point to the possibility that PARP may be a coactivator of CXCL1 transcription.


Biology of Reproduction | 2002

Identification of Ras and Its Downstream Signaling Elements and Their Potential Role in Hamster Sperm Motility

Subir K. NagDas; Virginia P. Winfrey; Gary E. Olson

Abstract Ras, a member of the small G-protein family, regulates multiple signaling pathways in somatic cells. The objectives of the present study included the characterization and localization of Ras and the identification of its downstream effectors in hamster spermatozoa. Immunoblot analysis with a pan-Ras monoclonal antibody localized Ras to the particulate fraction of sonicated testicular and caput and cauda epididymal spermatozoa. However, Ras was present in both the particulate and soluble fractions of spermatocytes and round spermatids, suggesting that its membrane recruitment is completed during spermiogenesis. Immunoblots of plasma membrane fractions demonstrated that hamster spermatozoa express both N-Ras and K-Ras. Indirect immunofluorescence with pan-Ras antibody localized Ras to the flagellum. Immunoblot analysis of sperm plasma membrane fractions demonstrated the presence of phosphatidylinositol 3-kinase (PI3-kinase) and protein kinase C ζ (PKCζ), the downstream targets of Ras, and coimmunoprecipitation analysis demonstrated their interaction with Ras. Inhibitors of PI3-kinase (wortmannin and 2-(4- morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) and PKCζ (staurosporine) inhibited the hyperactivation of sperm motility during capacitation in a dose-dependent manner, indicating that both PI3-kinase and PKCζ are associated with development of this motility pattern. The interaction of Ras with both PI3-kinase and PKCζ suggests that Ras may regulate several signaling pathways in spermatozoa.


Biology of Reproduction | 2004

Zonadhesin Assembly into the Hamster Sperm Acrosomal Matrix Occurs by Distinct Targeting Strategies During Spermiogenesis and Maturation in the Epididymis

Gary E. Olson; Virginia P. Winfrey; Ming Bi; Daniel M. Hardy; Subir K. NagDas

Abstract Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.


Biology of Reproduction | 2005

Tyrosine Phosphorylation Generates Multiple Isoforms of the Mitochondrial Capsule Protein, Phospholipid Hydroperoxide Glutathione Peroxidase (PHGPx), During Hamster Sperm Capacitation

Subir K. NagDas; Virginia P. Winfrey; Gary E. Olson

Abstract Sperm capacitation is a maturation process, occurring in the female reproductive tract, that produces fertilization-competent spermatozoa. Protein tyrosine phosphorylation represents an important event in capacitation. The present study demonstrates the capacitation-dependent tyrosine-phosphorylation of phospholipid hydroperoxide glutathione peroxidase (PHGPx), the disulfide cross-linked, major structural protein of the sperm mitochondrial capsule. Immunofluorescence microscopy using an antiphosphotyrosine monoclonal antibody (anti-pY20) demonstrated the presence of capacitation-associated tyrosine phosphorylated proteins in the flagellum of hamster spermatozoa. Among the tyrosine-phosphorylated polypeptides (Mr 19 000– 99 000), a 19-kDa polypeptide was the only one that can be solubilized completely by Triton X-100-dithiothreitol (DTT). The 19-kDa polypeptide was purified by anion-exchange chromatography and by immunoaffinity chromatography. Proteomic identification of the 19-kDa polypeptide by nano-electrospray tandem mass spectrometry yielded six peptides that matched the National Center for Biotechnology Information (NCBI) database sequences of bovine PHGPx. Indirect immunofluorescence localized PHGPx to the midpiece of the flagellum and the immunoblot analysis demonstrated its DTT-dependent release from purified flagella. DTT extracts of noncapacitated spermatozoa exhibited a charge train of four major PHGPx isoforms (pIs 7.5– 9.0) by two-dimensional PAGE, whereas capacitated spermatozoa revealed the generation of new acidic PHGPx isoforms with isoelectric points ranging between pH 6.0–7.0 and 4.0–5.0, indicating that it is posttranslationally modified during capacitation. These data suggest that the tyrosine-phosphorylation of PHGPx may represent an important event in the signaling pathway(s) associated with capacitation and could potentially affect mitochondrial function.


Archive | 2002

Structural Differentiation of Spermatozoa During Post-Testicular Maturation

Gary E. Olson; Subir K. NagDas; Virginia P. Winfrey

The male gamete exits from the testis as a highly polarized but functionally immature spermatozoon that requires further differentiation in the epididymis to become progressively motile and to acquire fertilizing capacity. This crucial developmental process requires sperm interaction with a progressively changing luminal environment regulated by region-specific secretory and absorptive activities of the epididymal epithelium (Hinton and Palladino, 1995; Hinton et al., 1996). Early studies demonstrated striking differences in the electrophoretic mobility of whole caput and cauda epididymal spermatozoa (Bedford, 1963), suggesting that a maturation-dependent increase in anionic residues on the sperm surface resulted from this interaction. This idea was confirmed ultrastructurally by cytochemical studies demonstrating altered binding of charged colloidal iron particles and lectins to specific surface domains of the spermatozoon as they transit the epididymis (Yanagimachi et al., 1972; Nicolson et al., 1977). Now it is recognized that an extensive biochemical remodeling of the protein, glycoprotein and lipid composition of the sperm plasma membrane is an important component of post-testicular sperm maturation (Bartles, 1995; Jones 1998; Ladha, 1998).


Journal of Biological Chemistry | 2004

Region-specific Expression and Secretion of the Fibrinogen-related Protein, fgl2, by Epithelial Cells of the Hamster Epididymis and Its Role in Disposal of Defective Spermatozoa

Gary E. Olson; Virginia P. Winfrey; Subir K. NagDas; Michael H. Melner

The cauda epididymidis functions in the storage and protection of mature, fertile spermatozoa. We previously identified a region-specific secretory glycoprotein (termed HEP64) of the hamster proximal cauda epididymidis that specifically bound and coated the nonviable, but not the viable, spermatozoa within the epididymal lumen. In this study we employed expression screening of a hamster epididymal cDNA library to obtain the full-length sequence of HEP64 and to identify it as the fibrinogen-like protein fgl2. Northern blot analysis demonstrated that fgl2 mRNA is highly expressed by the proximal cauda epididymidis in comparison to other hamster tissues examined, and, in situ hybridization analysis of the epididymis revealed that fgl2 mRNA exhibited a region- and principal cell-specific expression pattern. Immunohistochemistry confirmed the association of fgl2 with abnormal spermatozoa in the cauda epididymidis and revealed smaller fgl2-containing particles. Immunoelectron microscopy revealed that fgl2 was distributed throughout an amorphous, “death cocoon,” complex assembled onto abnormal spermatozoa and that the smaller fgl2 aggregates consisted of the amorphous material with embedded sperm fragments, organelles, and membrane vesicles. A protocol was developed to isolate an enriched death cocoon fraction. SDS-PAGE and microsequence analyses revealed that the Mr 64,000 fgl2 monomer was assembled into two disulfide-linked oligomers of Mr 260,000 and 280,000. These data demonstrate that the epididymis possesses a specific mechanism to identify and envelop defective spermatozoa with a protein complex containing the fibrinogen-like protein fgl2. We propose that this represents an important protective mechanism not only to shield the viable sperm population from potentially deleterious enzymes released by dying spermatozoa but also to prevent the release of sperm proteins that could initiate an immune response if they escaped the epididymal environment.


Biology of Reproduction | 2000

Identification of a Hamster Epididymal Region-Specific Secretory Glycoprotein That Binds Nonviable Spermatozoa

Subir K. NagDas; Virginia P. Winfrey; Gary E. Olson

Abstract Even though the epididymis produces an environment promoting sperm maturation and viability, some sperm do not survive transit through the epididymal tubule. Mechanisms that segregate the epididymal epithelium and/or the viable sperm population from degenerating spermatozoa are poorly understood. We report here the identification and characterization of HEP64, a 64-kDa glycoprotein secreted by principal cells of the corpus and proximal cauda epididymidis of the hamster that specifically binds to and coats dead/dying spermatozoa. The HEP64 monomer contains ∼12 kDa carbohydrate and, following chemical deglycosylation, migrates as a ∼52-kDa polypeptide. Both soluble (luminal fluid) and sperm-associated HEP64 are assembled into disulfide-linked high molecular weight oligomers that migrate as a doublet band of 260/280 kDa by nonreducing SDS-PAGE. In the epididymal lumen, HEP64 is concentrated into focal accumulations containing aggregates of structurally abnormal or degenerating spermatozoa, and examination of sperm suspensions reveals that HEP64 forms a shroudlike coating surrounding abnormal spermatozoa. The HEP64 glycoprotein firmly binds degenerating spermatozoa and is not released by either nonionic detergent or high salt extraction. Electron microscopic immunocytochemistry demonstrates that HEP64 localized to an amorphous coating surrounding the abnormal spermatozoa. The potential mechanisms by which this epididymal secretory protein binds dead spermatozoa as well as its possible functions in the sperm storage function of the cauda epididymidis are discussed.


Biology of Reproduction | 2002

Stage-Specific Expression of the Intermediate Filament Protein Cytokeratin 13 in Luminal Epithelial Cells of Secretory Phase Human Endometrium and Peri-Implantation Stage Rabbit Endometrium

Gary E. Olson; Virginia P. Winfrey; Gareth L. Blaeuer; John R. Palisano; Subir K. NagDas

Abstract In preparation for blastocyst implantation, uterine luminal epithelial cells express new cell adhesion molecules on their apical plasma membrane. Since one mechanism epithelial cells employ to regulate membrane polarity is the establishment of specific membrane-cytoskeletal interactions, this study was undertaken to determine if new cytokeratin (CK) intermediate filament assemblies are expressed in endometrial epithelial cells during developmental stages related to blastocyst implantation. Type-specific CK antibodies were used for immunocytochemical and immunoblot analyses of 1) intermediate filament networks of the endometrial epithelium during embryo implantation in rabbits and 2) proliferative and secretory phases of the human menstrual cycle. CK18, a type I CK found in most simple epithelia, was expressed in all luminal and glandular epithelial cells of both the human and rabbit endometrium at all developmental stages analyzed; it was also strongly expressed in trophectoderm of the implanting rabbit blastocyst. In contrast, CK13, another type I cytokeratin, exhibited a regulated expression pattern in luminal, but not glandular, epithelial cells of secretory phase human and peri-implantation stage rabbit endometrium. Furthermore, in the rabbit implantation chambers, CK13 was predominately localized at the cell apex of luminal epithelial cells, where it assembled into a dense filamentous network. These data suggest that the stage-specific expression of CK13 and a reorganization of the apical intermediate filament cytoskeleton of uterine luminal epithelial cells may play important functions in preparation for the implantation process.


Molecular Reproduction and Development | 1997

Temporal expression and localization of protein farnesyltransferase during spermiogenesis and posttesticular sperm maturation in the hamster

Gary E. Olson; Subir K. NagDas; Virginia P. Winfrey

Spermiogenesis and posttesticular sperm maturation in the epididymis are distinct developmental processes that result in a polarized spermatozoon possessing a plasma membrane partitioned into segment‐specific domains of distinct composition and function. The mechanisms that specify the distribution of intracellular organelles and target proteins to restricted membrane domains are not well understood. In this study we examined the expression pattern and distribution of protein farnesyltransferase (FTase) in hamster spermatids and epididymal spermatozoa to determine if protein lipidation may represent a potential mechanism to regulate protein association with specific organelles or the plasma membrane. Round spermatids exhibited only weak immunostaining with antibody against the β‐subunit of FTase, whereas elongating spermatids exhibited a high level of FTase expression that was segregated to the cytoplasmic lobe surrounding the anterior flagellum. Although FTase was released with the residual body, mature spermatids retained FTase within the midpiece and cytoplasmic droplet. In epididymal spermatozoa, FTase remained associated with the cytoplasmic droplet during its migration to the midpiece‐principal piece junction; following release of the cytoplasmic droplet, no immunodetectable FTase was noted in the midpiece segment. Immunoblotting demonstrated the presence of both the α and β subunits of FTase in sperm lysates. The temporal expression pattern and restricted distribution of FTase in spermatids and epididymal spermatozoa suggest a potential role in regulating protein association with specific organelles and/or membrane domains of the mature spermatozoon. Mol. Reprod. Dev. 48:71–76, 1997.

Collaboration


Dive into the Subir K. NagDas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge