Subrata Hait
Indian Institute of Technology Patna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Subrata Hait.
Bioresource Technology | 2011
Subrata Hait; Vinod Tare
An integrated composting-vermicomposting process has been developed for utilization of primary sewage sludge (PSS). Matured vermicompost was used as bulking material and a source of active microbial culture during aerobic activated composting (AAC). AAC resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with PSS and produced materials acceptable for vermicomposting. Vermicomposting caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total organic carbon (TOC), C/N ratio and pathogens and substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP) as compared to compost. Environmental conditions and stocking density have profound effects on vermicomposting. Temperature of 20°C with high humidity is favorable environmental condition for vermicomposting employing Eisenia fetida. Favorable stocking density range for vermiculture is 0.5-2.0 kg m(-2) (optimum: 0.5 kg m(-2)) and for vermicomposting is 2.0-4.0 kg m(-2) (optimum: 3.0 kg m(-2)), respectively.
Ecotoxicology and Environmental Safety | 2012
Subrata Hait; Vinod Tare
Transformation and availability of nutrients and some heavy metals were assessed during the integrated composting-vermicomposting of both primary sewage sludge (PSS) and waste activated sewage sludge (WAS) using matured vermicompost as indigenous bulking material and employing Eisenia fetida as earthworm species. Vermicomposting resulted in significant increase in total N (TN) (PSS: 41.7-64.6%, F=11.6, P<0.05; WAS: 36.4-58.6%, F=6.4, P<0.05), water soluble N (WSN) (PSS: 37.1-50.5%, F=30.1, P<0.05; WAS: 40.1-53.0%, F=27.6, P<0.05), total P (TP) (PSS: 39.9-69.8%, F=27.1, P<0.05; WAS: 32.2-56.6%, F=21.4, P<0.05) and water soluble P (WSP) (PSS: 25.2-34.3%, F=163.9, P<0.05; WAS: 24.1-34.2%, F=144.3, P<0.05) as compared to the initial compost material depending on different experimental conditions. The study demonstrated that the vermicomposting significantly improved the availability of nutrients in sewage sludges. In addition, vermicomposting considerably reduced the availability of heavy metals except Fe and Mn, presumably by forming organic-bound complexes in spite of several fold increase in their total content. The environmental conditions (i.e., temperature and relative humidity), in general, showed significant effect on the transformation and availability of nutrients and heavy metals. There was no effect of earthworm density on the transformation and availability of heavy metals and nutrients except N and P, possibly due to prior exposure during acclimation period in sewage sludge.
Waste Management | 2011
Subrata Hait; Vinod Tare
An integrated composting-vermicomposting system has been developed for stabilization of waste activated sludge (WAS) using matured vermicompost as bulking material and Eisenia fetida as earthworm species. Composting was considered as the main processing unit and vermicomposting as polishing unit. The integrated system was optimized by successive recycling and mixing of bulking material with WAS during composting and examining the effects of environmental condition (i.e. temperature: 10-30°C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m(2)) on vermicomposting. The composting stage resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with WAS and produced materials acceptable for vermicomposting. Vermicomposting of composted material caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total carbon (TC), total organic carbon (TOC), C/N ratio and pathogens and a substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP). The environmental conditions (i.e. temperature: 10-30°C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m(2)) have profound effects on vermicomposting. Temperature of 20°C with high humidity is the best suited environmental condition for vermicomposting employing E. fetida. The favorable stocking density range for vermiculture is 0.5-2.0 kg/m(2) (optimum: 0.5 kg/m(2)) and for vermicomposting is 2.0-4.0 kg/m(2) (optimum: 3.0 kg/m(2)), respectively. The integrated composting-vermicomposting system potentially stabilizes and converts the hazardous WAS into quality organic manure for agronomic applications without any adverse effects.
Waste Management | 2017
Sathish Paulraj Gundupalli; Subrata Hait; Atul Thakur
A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling.
Environmental Science and Pollution Research | 2017
Anshu Priya; Subrata Hait
Waste electrical and electronic equipment (WEEE) or electronic waste (e-waste) is one of the fastest growing waste streams in the urban environment worldwide. The core component of printed circuit board (PCB) in e-waste contains a complex array of metals in rich quantity, some of which are toxic to the environment and all of which are valuable resources. Therefore, the recycling of e-waste is an important aspect not only from the point of waste treatment but also from the recovery of metals for economic growth. Conventional approaches for recovery of metals from e-waste, viz. pyrometallurgical and hydrometallurgical techniques, are rapid and efficient, but cause secondary pollution and economically unviable. Limitations of the conventional techniques have led to a shift towards biometallurgical technique involving microbiological leaching of metals from e-waste in eco-friendly manner. However, optimization of certain biotic and abiotic factors such as microbial species, pH, temperature, nutrients, and aeration rate affect the bioleaching process and can lead to profitable recovery of metals from e-waste. The present review provides a comprehensive assessment on the metallurgical techniques for recovery of metals from e-waste with special emphasis on bioleaching process and the associated factors.
Waste Management | 2018
Anshu Priya; Subrata Hait
Comprehensive characterization of printed circuit board (PCB) of end-of-life electrical and electronic equipment (EEE) is obligatory for prospective profitable beneficiation. In this study, beneficiation oriented comprehensive characterization of two brands of PCBs each of 16 end-of-life EEE was conducted in terms of their physicochemical characteristics with special emphasis on the content of 16 general elements, 2 precious metals and 15 rare earth elements (REEs). General elements and their highest weight percent composition found in different PCBs of the EEEs were Cu (23% in laptop), Al (6% in computer), Pb (15% in DVD player) and Ba (7% in TV). The high abundant of precious metals such as Au (316 g/ton) and Ag (636 g/ton) in mobile phone and laptop, respectively coupled with rapid obsolescence age makes waste PCBs of information technology and telecommunication equipment the most potent resource reservoir. Additionally, most of the waste PCBs were observed to contain REEs in considerable quantity with Sc up to 31 g/ton and Ce up to 13 g/ton being the major constituents. Comprehensive characterization of waste PCBs therefore will systematically help towards better understanding of e-waste recycling processes for beneficiation purpose and sustainable resource circulation and conservation.
Journal of Environmental Engineering and Science | 2008
Subrata Hait; Debabrata Mazumder
Activated sludge process is widely used for wastewater treatment throughout the world with various needful modifications. The hybrid modification of conventional activated sludge process utilizes a...
Journal of Environmental Quality | 2018
Ankita Swati; Subrata Hait
Management of both municipal and industrial organic wastes remains a major threat to biota and the environment due to the presence of pathogens in abundance. Vermicomposting employing earthworms is increasingly gaining attention as a sustainable and ecofriendly technique to transform and sanitize a variety of organic wastes into nutrient-rich biofertilizer. Although considerable research has been undertaken to show that vermicomposting can significantly reduce pathogenic contents, there is little effort to summarize the various mechanisms responsible for it. With the aim to assess the fate of pathogens during vermicomposting of various organic wastes, this article provides a comprehensive summary on the occurrence of pathogens in a variety of wastes vis-à-vis pathogens standards, the efficacy of the process for pathogen reduction, and current knowledge of the plausible mechanisms involved. It is evident from the present study that earthworms and endosymbiotic microbes during vermicomposting tend to eliminate pathogens by enhancing enzymatic activities in both gut- and cast-associated processes. Pathogen reduction during vermicomposting can be plausibly attributed to direct actions like microbial inhibition due to intestinal enzymatic action, and secretion of coelomic fluids with antibacterial properties, as well as indirect actions like stimulation of endemic microbes leading to competition and antagonism, and aeration by burrowing activity. Further, the pathogen reduction during vermicomposting is largely selective, and earthworms exert a differential effect according to the earthworm species and whether the pathogen considered is Gram-positive or -negative, owing to its cell wall composition. However, further research is necessary to understand the exact mechanisms involved for pathogen reduction during vermistabilization of municipal and industrial organic wastes.
Waste Management | 2017
Sathish Paulraj Gundupalli; Subrata Hait; Atul Thakur
There has been a significant rise in municipal solid waste (MSW) generation in the last few decades due to rapid urbanization and industrialization. Due to the lack of source segregation practice, a need for automated segregation of recyclables from MSW exists in the developing countries. This paper reports a thermal imaging based system for classifying useful recyclables from simulated MSW sample. Experimental results have demonstrated the possibility to use thermal imaging technique for classification and a robotic system for sorting of recyclables in a single process step. The reported classification system yields an accuracy in the range of 85-96% and is comparable with the existing single-material recyclable classification techniques. We believe that the reported thermal imaging based system can emerge as a viable and inexpensive large-scale classification-cum-sorting technology in recycling plants for processing MSW in developing countries.
RSC Advances | 2017
Vikash Kumar; Ruchira Rudra; Arpita Nandy; Subrata Hait; P. P. Kundu
In the present study, sulfonated low density polyethylenes (LDPEs) in varied molar ratios have been analyzed as separating barriers in microbial fuel cells (MFCs) for bioelectricity production. LDPE sulfonation was performed with chlorosulfonic acid for 7, 15, 30, 45 and 60 minutes which revealed respective degree of sulfonation (DS) results of 9%, 12%, 15%, 10% and 7% in SPE-7, SPE-15, SPE-30, SPE-45 and SPE-60 membranes. Prolonged sulfonation (above 30 minutes) has shown additional sulfone crosslinking formation within the membrane structure, thereby reducing the respective DS in the SPE-45 and SPE-60 membranes. Enhanced membrane properties in terms of water uptake, ion-exchange capacity (IEC) and proton conductivity have been observed with an increasing DS as a result of the incorporated sulfonic acid in the membranes. In succession, respective IEC values of 0.0056, 0.015, 0.048, 0.0087 and 0.0012 meq g−1 and proton conductivities of 2.67 × 10−7, 3.12 × 10−6, 4.74 × 10−5, 2.76 × 10−7 and 2.13 × 10−8 S cm−1 have been observed with the SPE-7, SPE-15, SPE-30, SPE-45 and SPE-60 membranes, where reduced membrane properties in the SPE-45 and SPE-60 membranes were observed with additional sulfone crosslinks being formed in the structure. The casted membranes were assembled as a membrane electrode assembly (MEA) in single chambered MFCs, where a maximum power and current density of 85.73 ± 5 mW m−2 and 355.07 ± 18 mA m−2 were observed with the SPE-30(DS 15%) membrane with an overall ∼88.67% chemical oxygen demand (COD) removal in a 30 day run. The employed electrogenic firmicutes showed marked reductions in the overall systemic resistance, depicting the relevance of sulfonated LDPE membranes in MFCs as potent separators for bio-energy conversion.