Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sudeshna Das is active.

Publication


Featured researches published by Sudeshna Das.


Journal of Biomedical Semantics | 2011

An open annotation ontology for science on web 3.0

Paolo Ciccarese; Marco Ocana; Leyla Jael Garcia Castro; Sudeshna Das; Timothy W.I. Clark

BackgroundThere is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges.MethodsInitial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work.ResultsThis paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables “stand-off” or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO’s Google Code page: http://code.google.com/p/annotation-ontology/ .ConclusionsThe Annotation Ontology meets critical requirements for an open, freely shareable model in OWL, of annotation metadata created against scientific documents on the Web. We believe AO can become a very useful common model for annotation metadata on Web documents, and will enable biomedical domain ontologies to be used quite widely to annotate the scientific literature. Potential collaborators and those with new relevant use cases are invited to contact the authors.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The Ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation

Cathal T. McCann; Eimear E. Holohan; Sudeshna Das; Adrian G. Dervan; Aoife Larkin; John Anthony Lee; Veronica Rodrigues; Roy Parker; Mani Ramaswami

Local control of mRNA translation has been proposed as a mechanism for regulating synapse-specific plasticity associated with long-term memory. We show here that glomerulus-selective plasticity of Drosophila multiglomerular local interneurons observed during long-term olfactory habituation (LTH) requires the Ataxin-2 protein (Atx2) to function in uniglomerular projection neurons (PNs) postsynaptic to local interneurons (LNs). PN-selective knockdown of Atx2 selectively blocks LTH to odorants to which the PN responds and in addition selectively blocks LTH-associated structural and functional plasticity in odorant-responsive glomeruli. Atx2 has been shown previously to bind DEAD box helicases of the Me31B family, proteins associated with Argonaute (Ago) and microRNA (miRNA) function. Robust transdominant interactions of atx2 with me31B and ago1 indicate that Atx2 functions with miRNA-pathway components for LTH and associated synaptic plasticity. Further direct experiments show that Atx2 is required for miRNA-mediated repression of several translational reporters in vivo. Together, these observations (i) show that Atx2 and miRNA components regulate synapse-specific long-term plasticity in vivo; (ii) identify Atx2 as a component of the miRNA pathway; and (iii) provide insight into the biological function of Atx2 that is of potential relevance to spinocerebellar ataxia and neurodegenerative disease.


Science | 2016

RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS

Yasushi Ito; Dimitry Ofengeim; Ayaz Najafov; Sudeshna Das; Shahram Saberi; Ying Li; Junichi Hitomi; Hong Zhu; Hongbo Chen; Lior Mayo; Jiefei Geng; Palak Amin; Judy Park DeWitt; Adnan K. Mookhtiar; Marcus Florez; Amanda Tomie Ouchida; Jian Bing Fan; Manolis Pasparakis; Michelle A. Kelliher; John Ravits; Junying Yuan

Axonal pathology and necroptosis in ALS Necroptosis, a non–caspase-dependent form of cell death, can be reduced in disease states by inhibiting a kinase called RIPK1. Until now, no human mutations have been linked to necroptosis. Ito et al. show that loss of optineurin, which is encoded by a gene that has been implicated in the human neurodegenerative disorder ALS (amyotrophic lateral sclerosis), results in sensitivity to necroptosis and axonal degeneration. When RIPK1-kinase dependent signaling is disrupted in mice that lack optineurin, necroptosis is inhibited and axonal pathology is reversed. Science, this issue p. 603 Inflammatory and cell death mechanisms underlie axonal pathology in amyotrophic lateral sclerosis. Mutations in the optineurin (OPTN) gene have been implicated in both familial and sporadic amyotrophic lateral sclerosis (ALS). However, the role of this protein in the central nervous system (CNS) and how it may contribute to ALS pathology are unclear. Here, we found that optineurin actively suppressed receptor-interacting kinase 1 (RIPK1)–dependent signaling by regulating its turnover. Loss of OPTN led to progressive dysmyelination and axonal degeneration through engagement of necroptotic machinery in the CNS, including RIPK1, RIPK3, and mixed lineage kinase domain–like protein (MLKL). Furthermore, RIPK1- and RIPK3-mediated axonal pathology was commonly observed in SOD1G93A transgenic mice and pathological samples from human ALS patients. Thus, RIPK1 and RIPK3 play a critical role in mediating progressive axonal degeneration. Furthermore, inhibiting RIPK1 kinase may provide an axonal protective strategy for the treatment of ALS and other human degenerative diseases characterized by axonal degeneration.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Plasticity of local GABAergic interneurons drives olfactory habituation

Sudeshna Das; Madhumala K. Sadanandappa; Adrian G. Dervan; Aoife Larkin; John Anthony Lee; Indulekha P. Sudhakaran; R. Priya; Raheleh Heidari; Eimear E. Holohan; Angel Pimentel; Avni Gandhi; Kei Ito; Subhabrata Sanyal; Jing W. Wang; Veronica Rodrigues; Mani Ramaswami

Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABAA receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.


PLOS ONE | 2012

Genome-Wide Histone Acetylation Is Altered in a Transgenic Mouse Model of Huntington's Disease

Karen N. McFarland; Sudeshna Das; Ting Ting Sun; Dmitri Leyfer; Eva Xia; Gavin R. Sangrey; Alexandre Kuhn; Ruth Luthi-Carter; Timothy W.I. Clark; Ghazaleh Sadri-Vakili; Jang-Ho J. Cha

In Huntingtons disease (HD; MIM ID #143100), a fatal neurodegenerative disorder, transcriptional dysregulation is a key pathogenic feature. Histone modifications are altered in multiple cellular and animal models of HD suggesting a potential mechanism for the observed changes in transcriptional levels. In particular, previous work has suggested an important link between decreased histone acetylation, particularly acetylated histone H3 (AcH3; H3K9K14ac), and downregulated gene expression. However, the question remains whether changes in histone modifications correlate with transcriptional abnormalities across the entire transcriptome. Using chromatin immunoprecipitation paired with microarray hybridization (ChIP-chip), we interrogated AcH3-gene interactions genome-wide in striata of 12-week old wild-type (WT) and transgenic (TG) R6/2 mice, an HD mouse model, and correlated these interactions with gene expression levels. At the level of the individual gene, we found decreases in the number of sites occupied by AcH3 in the TG striatum. In addition, the total number of genes bound by AcH3 was decreased. Surprisingly, the loss of AcH3 binding sites occurred within the coding regions of the genes rather than at the promoter region. We also found that the presence of AcH3 at any location within a gene strongly correlated with the presence of its transcript in both WT and TG striatum. In the TG striatum, treatment with histone deacetylase (HDAC) inhibitors increased global AcH3 levels with concomitant increases in transcript levels; however, AcH3 binding at select gene loci increased only slightly. This study demonstrates that histone H3 acetylation at lysine residues 9 and 14 and active gene expression are intimately tied in the rodent brain, and that this fundamental relationship remains unchanged in an HD mouse model despite genome-wide decreases in histone H3 acetylation.


Alzheimers & Dementia | 2016

Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease

Genevera I. Allen; Nicola Amoroso; Catalina V Anghel; Venkat K. Balagurusamy; Christopher Bare; Derek Beaton; Roberto Bellotti; David A. Bennett; Kevin L. Boehme; Paul C. Boutros; Laura Caberlotto; Cristian Caloian; Frederick Campbell; Elias Chaibub Neto; Yu Chuan Chang; Beibei Chen; Chien Yu Chen; Ting Ying Chien; Timothy W.I. Clark; Sudeshna Das; Christos Davatzikos; Jieyao Deng; Donna N. Dillenberger; Richard Dobson; Qilin Dong; Jimit Doshi; Denise Duma; Rosangela Errico; Guray Erus; Evan Everett

Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimers disease. The Alzheimers disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state‐of‐the‐art in predicting cognitive outcomes in Alzheimers disease based on high dimensional, publicly available genetic and structural imaging data. This meta‐analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.


Proceedings of the National Academy of Sciences of the United States of America | 2017

RIPK1 mediates a disease-associated microglial response in Alzheimer’s disease

Dimitry Ofengeim; Sonia Mazzitelli; Yasushi Ito; Judy Park DeWitt; Lauren Mifflin; Chengyu Zou; Sudeshna Das; Xian Adiconis; Hongbo Chen; Hong Zhu; Michelle A. Kelliher; Joshua Z. Levin; Junying Yuan

Significance Dysfunction of microglia plays a fundamental role in the pathogenesis of Alzheimer’s disease (AD), the most common form of dementia. However, there is a lack of knowledge about targets that can be safely manipulated for modulating microglia for the treatment of AD. The presence of a unique subtype of disease-associated microglia (DAM) has recently been implicated in mediating pathogenesis of AD. However, the mechanism that promotes the development of DAM is unclear, nor is it known how DAM may modulate the progression of AD. This study demonstrates that RIPK1-dependent transcription promotes DAM and lysosomal defects to mediate the accumulation of amyloid plaques in AD. Thus, targeting RIPK1 may provide an important therapeutic strategy for the treatment of AD. Dysfunction of microglia is known to play an important role in Alzheimer’s disease (AD). Here, we investigated the role of RIPK1 in microglia mediating the pathogenesis of AD. RIPK1 is highly expressed by microglial cells in human AD brains. Using the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model, we found that inhibition of RIPK1, using both pharmacological and genetic means, reduced amyloid burden, the levels of inflammatory cytokines, and memory deficits. Furthermore, inhibition of RIPK1 promoted microglial degradation of Aβ in vitro. We characterized the transcriptional profiles of adult microglia from APP/PS1 mice and identified a role for RIPK1 in regulating the microglial expression of CH25H and Cst7, a marker for disease-associated microglia (DAM), which encodes an endosomal/lysosomal cathepsin inhibitor named Cystatin F. We present evidence that RIPK1-mediated induction of Cst7 leads to an impairment in the lysosomal pathway. These data suggest that RIPK1 may mediate a critical checkpoint in the transition to the DAM state. Together, our study highlights a non-cell death mechanism by which the activation of RIPK1 mediates the induction of a DAM phenotype, including an inflammatory response and a reduction in phagocytic activity, and connects RIPK1-mediated transcription in microglia to the etiology of AD. Our results support that RIPK1 is an important therapeutic target for the treatment of AD.


Journal of Biomedical Semantics | 2014

Semantic Web repositories for genomics data using the eXframe platform

Emily Merrill; Stéphane Corlosquet; Paolo Ciccarese; Timothy W.I. Clark; Sudeshna Das

BackgroundWith the advent of inexpensive assay technologies, there has been an unprecedented growth in genomics data as well as the number of databases in which it is stored. In these databases, sample annotation using ontologies and controlled vocabularies is becoming more common. However, the annotation is rarely available as Linked Data, in a machine-readable format, or for standardized queries using SPARQL. This makes large-scale reuse, or integration with other knowledge bases very difficult.MethodsTo address this challenge, we have developed the second generation of our eXframe platform, a reusable framework for creating online repositories of genomics experiments. This second generation model now publishes Semantic Web data. To accomplish this, we created an experiment model that covers provenance, citations, external links, assays, biomaterials used in the experiment, and the data collected during the process. The elements of our model are mapped to classes and properties from various established biomedical ontologies. Resource Description Framework (RDF) data is automatically produced using these mappings and indexed in an RDF store with a built-in Sparql Protocol and RDF Query Language (SPARQL) endpoint.ConclusionsUsing the open-source eXframe software, institutions and laboratories can create Semantic Web repositories of their experiments, integrate it with heterogeneous resources and make it interoperable with the vast Semantic Web of biomedical knowledge.


Journal of Huntington's disease | 2013

Genome-Wide Increase in Histone H2A Ubiquitylation in a Mouse Model of Huntington's Disease

Karen N. McFarland; Sudeshna Das; Ting Ting Sun; Dmitri Leyfer; Mee-Ohk Kim; Eva Xia; Gavin R. Sangrey; Alexandre Kuhn; Ruth Luthi-Carter; Timothy W.I. Clark; Ghazaleh Sadri-Vakili; Jang-Ho J. Cha

BACKGROUND Huntingtons disease (HD) is a neurodegenerative disorder with selective vulnerability of striatal neurons and involves extensive transcriptional dysregulation early in the disease process. Previous work in cell and mouse models has shown that histone modifications are altered in HD. Specifically, monoubiquitylated histone H2A (uH2A) is present at the promoters of downregulated genes which led to the hypothesis that uH2A plays a role in transcriptional silencing in HD. OBJECTIVE To broaden our view of uH2A function in transcription in HD, we examined genome-wide binding sites of uH2A in 12-week old striatal tissue from R6/2 transgenic HD mouse model. METHODS We used chromatin immunoprecipitation followed by genomic promoter microarray hybridization (ChIP-chip) and then interrogated how these binding sites correlate with transcribed genes. RESULTS Our analysis reveals that, while uH2A levels are globally increased at the genome in the transgenic (TG) striatum, uH2A localization at a gene did not strongly correlate with the absence of its transcript. Furthermore, analysis of differential ubiquitylation in wild-type (WT) and TG striata did not reveal the expected enrichment of uH2A at genes with decreased expression in the TG striatum. CONCLUSIONS This first description of genome-wide localization of uH2A in an HD model reveals that monoubiquitylation of histone H2A may not function at the level of the individual gene but may rather influence transcription through global chromatin structure.


BMC Bioinformatics | 2011

eXframe: reusable framework for storage, analysis and visualization of genomics experiments

Amit U. Sinha; Emily Merrill; Scott A. Armstrong; Timothy W.I. Clark; Sudeshna Das

BackgroundGenome-wide experiments are routinely conducted to measure gene expression, DNA-protein interactions and epigenetic status. Structured metadata for these experiments is imperative for a complete understanding of experimental conditions, to enable consistent data processing and to allow retrieval, comparison, and integration of experimental results. Even though several repositories have been developed for genomics data, only a few provide annotation of samples and assays using controlled vocabularies. Moreover, many of them are tailored for a single type of technology or measurement and do not support the integration of multiple data types.ResultsWe have developed eXframe - a reusable web-based framework for genomics experiments that provides 1) the ability to publish structured data compliant with accepted standards 2) support for multiple data types including microarrays and next generation sequencing 3) query, analysis and visualization integration tools (enabled by consistent processing of the raw data and annotation of samples) and is available as open-source software. We present two case studies where this software is currently being used to build repositories of genomics experiments - one contains data from hematopoietic stem cells and another from Parkinsons disease patients.ConclusionThe web-based framework eXframe offers structured annotation of experiments as well as uniform processing and storage of molecular data from microarray and next generation sequencing platforms. The framework allows users to query and integrate information across species, technologies, measurement types and experimental conditions. Our framework is reusable and freely modifiable - other groups or institutions can deploy their own custom web-based repositories based on this software. It is interoperable with the most important data formats in this domain. We hope that other groups will not only use eXframe, but also contribute their own useful modifications.

Collaboration


Dive into the Sudeshna Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena F. Deus

National University of Ireland

View shared research outputs
Researchain Logo
Decentralizing Knowledge