Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sudha Ananth is active.

Publication


Featured researches published by Sudha Ananth.


Cancer Research | 2009

GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon.

Muthusamy Thangaraju; Gail Cresci; Kebin Liu; Sudha Ananth; Jaya P. Gnana-Prakasam; John D. Mellinger; Sylvia B. Smith; Gregory J. Digby; Nevin A. Lambert; Puttur D. Prasad; Vadivel Ganapathy

Short-chain fatty acids, generated in colon by bacterial fermentation of dietary fiber, protect against colorectal cancer and inflammatory bowel disease. Among these bacterial metabolites, butyrate is biologically most relevant. GPR109A is a G-protein-coupled receptor for nicotinate but recognizes butyrate with low affinity. Millimolar concentrations of butyrate are needed to activate the receptor. Although concentrations of butyrate in colonic lumen are sufficient to activate the receptor maximally, there have been no reports on the expression/function of GPR109A in this tissue. Here we show that GPR109A is expressed in the lumen-facing apical membrane of colonic and intestinal epithelial cells and that the receptor recognizes butyrate as a ligand. The expression of GPR109A is silenced in colon cancer in humans, in a mouse model of intestinal/colon cancer, and in colon cancer cell lines. The tumor-associated silencing of GPR109A involves DNA methylation directly or indirectly. Reexpression of GPR109A in colon cancer cells induces apoptosis, but only in the presence of its ligands butyrate and nicotinate. Butyrate is an inhibitor of histone deacetylases, but apoptosis induced by activation of GPR109A with its ligands in colon cancer cells does not involve inhibition of histone deacetylation. The primary changes in this apoptotic process include down-regulation of Bcl-2, Bcl-xL, and cyclin D1 and up-regulation of death receptor pathway. In addition, GPR109A/butyrate suppresses nuclear factor-kappaB activation in normal and cancer colon cell lines as well as in normal mouse colon. These studies show that GPR109A mediates the tumor-suppressive effects of the bacterial fermentation product butyrate in colon.


Journal of Neurochemistry | 2006

Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain.

Pamela M. Martin; Elangovan Gopal; Sudha Ananth; Lina Zhuang; Shiro Itagaki; Balakrishna M. Prasad; Sylvia B. Smith; Puttur D. Prasad; Vadivel Ganapathy

SMCT1 is a sodium‐coupled (Na+‐coupled) transporter for l‐lactate and short‐chain fatty acids. Here, we show that the ketone bodies, β‐d‐hydroxybutyrate and acetoacetate, and the branched‐chain ketoacid, α‐ketoisocaproate, are also substrates for the transporter. The transport of these compounds via human SMCT1 is Na+‐coupled and electrogenic. The Michaelis constant is 1.4 ± 0.1 mm for β‐d‐hydroxybutyrate, 0.21 ± 0.04 mm for acetoacetate and 0.21 ± 0.03 mm for α‐ketoisocaproate. The Na+ : substrate stoichiometry is 2 : 1. As l‐lactate and ketone bodies constitute primary energy substrates for neurons, we investigated the expression pattern of this transporter in the brain. In situ hybridization studies demonstrate widespread expression of SMCT1 mRNA in mouse brain. Immunofluorescence analysis shows that SMCT1 protein is expressed exclusively in neurons. SMCT1 protein co‐localizes with MCT2, a neuron‐specific Na+‐independent monocarboxylate transporter. In contrast, there was no overlap of signals for SMCT1 and MCT1, the latter being expressed only in non‐neuronal cells. We also demonstrate the neuron‐specific expression of SMCT1 in mixed cultures of rat cortical neurons and astrocytes. This represents the first report of an Na+‐coupled transport system for a major group of energy substrates in neurons. These findings suggest that SMCT1 may play a critical role in the entry of l‐lactate and ketone bodies into neurons by a process driven by an electrochemical Na+ gradient and hence, contribute to the maintenance of the energy status and function of neurons.


Pharmaceutical Research | 2007

Transport of Nicotinate and Structurally Related Compounds by Human SMCT1 (SLC5A8) and Its Relevance to Drug Transport in the Mammalian Intestinal Tract

Elangovan Gopal; Seiji Miyauchi; Pamela M. Martin; Sudha Ananth; Penny Roon; Sylvia B. Smith; Vadivel Ganapathy

PurposeTo examine the involvement of human SMCT1, a Na+-coupled transporter for short-chain fatty acids, in the transport of nicotinate/structural analogs and monocarboxylate drugs, and to analyze its expression in mouse intestinal tract.Materials and MethodsWe expressed human SMCT1 in X. laevis oocytes and monitored its function by [14C]nicotinate uptake and substrate-induced inward currents. SMCT1 expression in mouse intestinal tract was examined by immunofluorescence.Results[14C]Nicotinate uptake was several-fold higher in SMCT1-expressing oocytes than in water-injected oocytes. The uptake was inhibited by short-chain/medium-chain fatty acids and various structural analogs of nicotinate. Exposure of SMCT1-expressing oocytes to nicotinate induced Na+-dependent inward currents. Measurements of nicotinate flux and associated charge transfer into oocytes suggest a Na+:nicotinate stoichiometry of 2:1. Monocarboxylate drugs benzoate, salicylate, and 5-aminosalicylate are also transported by human SMCT1. The transporter is expressed in the small intestine as well as colon, and the expression is restricted to the lumen-facing apical membrane of intestinal and colonic epithelial cells.ConclusionsHuman SMCT1 transports not only nicotinate and its structural analogs but also various monocarboxylate drugs. The transporter is expressed on the luminal membrane of the epithelial cells lining the intestinal tract. SMCT1 may participate in the intestinal absorption of monocarboxylate drugs.


Cancer Research | 2011

SIRT1 is essential for oncogenic signaling by estrogen/estrogen receptor α in breast cancer

Selvakumar Elangovan; Narayanan Venkatesan; Sudha Ananth; Jaya P. Gnana-Prakasam; Pamela M. Martin; Puttur D. Prasad; Vadivel Ganapathy; Muthusamy Thangaraju

The NAD-dependent histone deacetylase silent information regulator 1 (SIRT1) is overexpressed and catalytically activated in a number of human cancers, but recent studies have actually suggested that it may function as a tumor suppressor and metastasis inhibitor in vivo. In breast cancer, SIRT1 stabilization has been suggested to contribute to the oncogenic potential of the estrogen receptor α (ERα), but SIRT1 activity has also been associated with ERα deacetylation and inactivation. In this study, we show that SIRT1 is critical for estrogen to promote breast cancer. ERα physically interacted and functionally cooperated with SIRT1 in breast cancer cells. ERα also bound to the promoter for SIRT1 and increased its transcription. SIRT1 expression induced by ERα was sufficient to activate antioxidant and prosurvival genes in breast cancer cells, such as catalase and glutathione peroxidase, and to inactivate tumor suppressor genes such as cyclin G2 (CCNG2) and p53. Moreover, SIRT1 inactivation eliminated estrogen/ERα-induced cell growth and tumor development, triggering apoptosis. Taken together, these results indicated that SIRT1 is required for estrogen-induced breast cancer growth. Our findings imply that the combination of SIRT1 inhibitors and antiestrogen compounds may offer more effective treatment strategies for breast cancer.


Cancer Research | 2014

The Niacin/Butyrate Receptor GPR109A Suppresses Mammary Tumorigenesis by Inhibiting Cell Survival

Selvakumar Elangovan; Rajneesh Pathania; Sudha Ananth; Ravi Padia; Ling Lan; Nagendra Singh; Pamela M. Martin; Lesleyann Hawthorn; Puttur D. Prasad; Vadivel Ganapathy; Muthusamy Thangaraju

GPR109A, a G-protein-coupled receptor, is activated by niacin and butyrate. Upon activation in colonocytes, GPR109A potentiates anti-inflammatory pathways, induces apoptosis, and protects against inflammation-induced colon cancer. In contrast, GPR109A activation in keratinocytes induces flushing by activation of Cox-2-dependent inflammatory signaling, and the receptor expression is upregulated in human epidermoid carcinoma. Thus, depending on the cellular context and tissue, GPR109A functions either as a tumor suppressor or a tumor promoter. However, the expression status and the functional implications of this receptor in the mammary epithelium are not known. Here, we show that GPR109A is expressed in normal mammary tissue and, irrespective of the hormone receptor status, its expression is silenced in human primary breast tumor tissues, breast cancer cell lines, and in tumor tissues of three different murine mammary tumor models. Functional expression of this receptor in human breast cancer cell lines decreases cyclic AMP production, induces apoptosis, and blocks colony formation and mammary tumor growth. Transcriptome analysis revealed that GPR109A activation inhibits genes, which are involved in cell survival and antiapoptotic signaling, in human breast cancer cells. In addition, deletion of Gpr109a in mice increased tumor incidence and triggered early onset of mammary tumorigenesis with increased lung metastasis in MMTV-Neu mouse model of spontaneous breast cancer. These findings suggest that GPR109A is a tumor suppressor in mammary gland and that pharmacologic induction of this gene in tumor tissues followed by its activation with agonists could be an effective therapeutic strategy to treat breast cancer.


Investigative Ophthalmology & Visual Science | 2011

Expression and Iron-Dependent Regulation of Succinate Receptor GPR91 in Retinal Pigment Epithelium

Jaya P. Gnana-Prakasam; Sudha Ananth; Puttur D. Prasad; Ming Zhang; Sally S. Atherton; Pamela M. Martin; Sylvia B. Smith; Vadivel Ganapathy

PURPOSE GPR91, a succinate receptor, is expressed in retinal ganglion cells and induces vascular endothelial growth factor (VEGF) expression. RPE also expresses VEGF, but whether this cell expresses GPR91 is not known. Excessive iron is also proangiogenic, and hemochromatosis is associated with iron overload. Therefore, we examined the expression and iron-dependent regulation of GPR91 in the RPE. METHODS GPR91 expression was examined by RT-PCR and immunohistochemistry. Hemochromatosis mice, cytomegalovirus (CMV) infection of retina, expression of CMV-US2 in RPE, and exposure of RPE to ferric ammonium citrate (FAC) were used to examine the iron-dependent regulation of GPR91 expression. VEGF expression was quantified by qPCR. Knockdown of GPR91 in ARPE-19 cells was achieved with shRNA. RESULTS GPR91 was expressed in RPE but only in the apical membrane. Retinal expression of GPR91 was higher in hemochromatosis (Hfe(-/-)) mice than in wild-type (WT) mice. Primary RPE cells from Hfe(-/-) mice had increased GPR91 expression compared with WT RPE cells. Iron accumulation in cells induced by CMV infection, expression of CMV-US2, or treatment with FAC increased GPR91 expression. VEGF expression in the Hfe(-/-) mouse retina was increased at ages younger than 18 months, but the expression was downregulated at older ages. The involvement of GPR91 in succinate-induced expression of VEGF in RPE cells was confirmed with GPR91-specific shRNA. CONCLUSIONS GPR91 is expressed in the RPE with specific localization to the apical membrane, indicating that succinate in the subretinal space serves as the GPR91 agonist. Excessive iron in the retina and RPE enhances GPR91 expression; however, VEGF expression does not always parallel GPR91 expression.


PLOS ONE | 2015

Increased Oxidative and Nitrative Stress Accelerates Aging of the Retinal Vasculature in the Diabetic Retina

Folami Lamoke; Sean Shaw; Jianghe Yuan; Sudha Ananth; Michael Duncan; Pamela M. Martin; Manuela Bartoli

Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress.


Biochimica et Biophysica Acta | 2014

Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid.

Sudha Ananth; Jaya P. Gnana-Prakasam; Yangzom D. Bhutia; Rajalakshmi Veeranan-Karmegam; Pamela M. Martin; Sylvia B. Smith; Vadivel Ganapathy

Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe(-/-)) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe(-/-) mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe(-/-) mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe(-/-) retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.


Molecular and Cellular Biology | 2013

Molecular mechanism of SLC5A8 inactivation in breast cancer.

Selvakumar Elangovan; Rajneesh Pathania; Sudha Ananth; Ravi Padia; Sonne R. Srinivas; Ellappan Babu; Lesleyann Hawthorn; Thomas Boettger; Sylvia B. Smith; Puttur D. Prasad; Vadivel Ganapathy; Muthusamy Thangaraju

ABSTRACT SLC5A8 is a putative tumor suppressor that is inactivated in more than 10 different types of cancer, but neither the oncogenic signaling responsible for SLC5A8 inactivation nor the functional relevance of SLC5A8 loss to tumor growth has been elucidated. Here, we identify oncogenic HRAS (HRASG12V) as a potent mediator of SLC5A8 silencing in human nontransformed normal mammary epithelial cell lines and in mouse mammary tumors through DNMT1. Further, we demonstrate that loss of Slc5a8 increases cancer-initiating stem cell formation and promotes mammary tumorigenesis and lung metastasis in an HRAS-driven murine model of mammary tumors. Mammary-gland-specific overexpression of Slc5a8 (mouse mammary tumor virus-Slc5a8 transgenic mice), as well as induction of endogenous Slc5a8 in mice with inhibitors of DNA methylation, protects against HRAS-driven mammary tumors. Collectively, our results provide the tumor-suppressive role of SLC5A8 and identify the oncogenic HRAS as a mediator of tumor-associated silencing of this tumor suppressor in mammary glands. These findings suggest that pharmacological approaches to reactivate SLC5A8 expression in tumor cells have potential as a novel therapeutic strategy for breast cancer treatment.


Investigative Ophthalmology & Visual Science | 2010

Identification of a novel sodium-coupled oligopeptide transporter (SOPT2) in mouse and human retinal pigment epithelial cells

Paresh Chothe; Santoshanand V. Thakkar; Jaya P. Gnana-Prakasam; Sudha Ananth; David R. Hinton; Ram Kannan; Sylvia B. Smith; Pamela M. Martin; Vadivel Ganapathy

PURPOSE A sodium-coupled oligopeptide transporter (SOPT1) was described originally in ARPE-19 cells. The transporter is inducible by HIV-1 Tat. Recent studies of conjunctival epithelial cells have identified a second oligopeptide transporter (SOPT2). This study was conducted to determine whether the newly discovered SOPT2 is expressed in ARPE-19 cells, to examine whether the new transporter is also inducible by HIV-1 Tat, and to find out whether this transporter is expressed in primary RPE cells. METHODS The transport activity of SOPT2 was monitored in control and Tat-expressing ARPE-19 cells and in primary mouse and human fetal RPE cells by the uptake of the synthetic opioid peptide DADLE ((H-Tyr-D-Ala-Gly-Phe-D-Leu-OH) and by its susceptibility to inhibition by small peptides. Substrate selectivity was examined by competition studies and kinetic parameters were determined by saturation analysis. RESULTS ARPE-19 cells express DADLE uptake activity that is inhibited by small peptides, indicating expression of SOPT2 in these cells. The activity of SOPT2 is induced by HIV-1 Tat. SOPT2 accepts endogenous and synthetic opioid peptides as substrates, but nonpeptide opiate antagonists are excluded. An 11-amino-acid HIV-1 Tat peptide also serves as a high-affinity substrate for the transporter. Primary cultures of mouse and human fetal RPE cells express SOPT2. The transporter is partially Na(+)-dependent with comparable substrate selectivity and inhibitor specificity in the presence and absence of Na(+). CONCLUSIONS ARPE-19 cells as well as primary mouse and human fetal RPE cells express the newly discovered oligopeptide transporter SOPT2, and the transporter is induced by HIV-1 Tat in ARPE-19 cells.

Collaboration


Dive into the Sudha Ananth's collaboration.

Top Co-Authors

Avatar

Pamela M. Martin

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Vadivel Ganapathy

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Sylvia B. Smith

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Puttur D. Prasad

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elangovan Gopal

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Penny Roon

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

V. Ganapathy

Georgia Regents University

View shared research outputs
Researchain Logo
Decentralizing Knowledge