Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sudhakar Chintharlapalli is active.

Publication


Featured researches published by Sudhakar Chintharlapalli.


Cancer Research | 2007

The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells.

Susanne U. Mertens-Talcott; Sudhakar Chintharlapalli; Xiangrong Li; Stephen Safe

There is evidence that specificity proteins (Sp), such as Sp1, Sp3, and Sp4, are overexpressed in tumors and contribute to the proliferative and angiogenic phenotype associated with cancer cells. Sp1, Sp3, and Sp4 are expressed in a panel of estrogen receptor (ER)-positive and ER-negative breast cancer cell lines, and we hypothesized that regulation of their expression may be due to microRNA-27a (miR-27a), which is also expressed in these cell lines and has been reported to regulate the zinc finger ZBTB10 gene, a putative Sp repressor. Transfection of ER-negative MDA-MB-231 breast cancer cells with antisense miR-27a (as-miR-27a) resulted in increased expression of ZBTB10 mRNA and decreased expression of Sp1, Sp3, and Sp4 at the mRNA and protein levels and also decreased activity in cells transfected with constructs containing Sp1 and Sp3 promoter inserts. In addition, these responses were accompanied by decreased expression of Sp-dependent survival and angiogenic genes, including survivin, vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1). Moreover, similar results were observed in MDA-MB-231 cells transfected with ZBTB10 expression plasmid. Both as-miR-27a and ZBTB10 overexpression decreased the percentage of MDA-MB-231 cells in S phase of the cell cycle; however, ZBTB10 increased the percentage of cells in G(0)-G(1), whereas as-miR-27a increased the percentage in G(2)-M. This latter response was associated with induction of Myt-1 (another miR-27a target gene), which inhibits G(2)-M through enhanced phosphorylation and inactivation of cdc2. Thus, the oncogenic activity of miR-27a in MDA-MB-231 cells is due, in part, to suppression of ZBTB10 and Myt-1.


Cancer Research | 2007

Betulinic Acid Inhibits Prostate Cancer Growth through Inhibition of Specificity Protein Transcription Factors

Sudhakar Chintharlapalli; Sabitha Papineni; Shashi K. Ramaiah; Stephen Safe

Betulinic acid is a pentacyclic triterpene natural product initially identified as a melanoma-specific cytotoxic agent that exhibits low toxicity in animal models. Subsequent studies show that betulinic acid induces apoptosis and antiangiogenic responses in tumors derived from multiple tissues; however, the underlying mechanism of action is unknown. Using LNCaP prostate cancer cells as a model, we now show that betulinic acid decreases expression of vascular endothelial growth (VEGF) and the antiapoptotic protein survivin. The mechanism of these betulinic acid-induced antiangiogenic and proapoptotic responses in both LNCaP cells and in tumors is due to activation of selective proteasome-dependent degradation of the transcription factors specificity protein 1 (Sp1), Sp3, and Sp4, which regulate VEGF and survivin expression. Thus, betulinic acid acts as a novel anticancer agent through targeted degradation of Sp proteins that are highly overexpressed in tumors.


Cancer Research | 2008

Curcumin Decreases Specificity Protein Expression in Bladder Cancer Cells

Gayathri Chadalapaka; Indira Jutooru; Sudhakar Chintharlapalli; Sabitha Papineni; Roger Smith; Xiangrong Li; Stephen Safe

Curcumin is the active component of tumeric, and this polyphenolic compound has been extensively investigated as an anticancer drug that modulates multiple pathways and genes. In this study, 10 to 25 micromol/L curcumin inhibited 253JB-V and KU7 bladder cancer cell growth, and this was accompanied by induction of apoptosis and decreased expression of the proapoptotic protein survivin and the angiogenic proteins vascular endothelial growth factor (VEGF) and VEGF receptor 1 (VEGFR1). Because expression of survivin, VEGF, and VEGFR1 are dependent on specificity protein (Sp) transcription factors, we also investigated the effects of curcumin on Sp protein expression as an underlying mechanism for the apoptotic and antiangiogenic activity of this compound. The results show that curcumin induced proteasome-dependent down-regulation of Sp1, Sp3, and Sp4 in 253JB-V and KU7 cells. Moreover, using RNA interference with small inhibitory RNAs for Sp1, Sp3, and Sp4, we observed that curcumin-dependent inhibition of nuclear factor kappaB (NF-kappaB)-dependent genes, such as bcl-2, survivin, and cyclin D1, was also due, in part, to loss of Sp proteins. Curcumin also decreased bladder tumor growth in athymic nude mice bearing KU7 cells as xenografts and this was accompanied by decreased Sp1, Sp3, and Sp4 protein levels in tumors. These results show for the first time that one of the underlying mechanisms of action of curcumin as a cancer chemotherapeutic agent is due, in part, to decreased expression of Sp transcription factors in bladder cancer cells.


Cancer Research | 2013

Angiopoietin-2: An Attractive Target for Improved Antiangiogenic Tumor Therapy

Damien Gerald; Sudhakar Chintharlapalli; Hellmut G. Augustin; Laura E. Benjamin

Anti-VEGF pathway therapies primarily target immature blood vessels in tumors. However, emerging approaches to combine with targeted therapies impacting the later stages of remodeling and vessel maturation are expected to improve clinical efficacy by expanding the target vessel population. The angiopoietin/Tie ligand/receptor system is a prototypic regulator of vessel remodeling and maturation. Angiopoietin-2 (Ang2) appears to be a particularly attractive therapeutic target. In fact, the experimental proof-of-concept showing improved efficacy when VEGF and Ang2-targeting therapies are combined has been solidly established in preclinical models, and several Ang2-targeting drugs are in clinical trials. However, rational development of these second-generation combination therapies is hampered by a limited understanding of the biological complexity that is generated from agonistic and antagonistic Ang/Tie signaling. This review discusses recent mechanistic advances in angiopoietin signaling, particularly in light of the recent study published on REGN910 and summarizes the status quo of Ang2-targeting therapies. In light of the clarified partial agonist function of Ang2, we propose that clarity on the expression profile of the angiopoietin ligands and Tie1 and Tie2 receptors in subsets of cancer vessels and cancer cells will provide clearer hypotheses for more focused rational clinical trials to exploit this seminal pathway and improve current antiangiogenic therapies.


International Journal of Cancer | 2009

Oncogenic microRNA-27a is a target for anticancer agent methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate in colon cancer cells

Sudhakar Chintharlapalli; Sabitha Papineni; Maen Abdelrahim; Ala Abudayyeh; Indira Jutooru; Gayathri Chadalapaka; Fei Wu; Susanne U. Mertens-Talcott; Kathy Vanderlaag; Sung Dae Cho; Roger Smith; Stephen Safe

Methyl 2‐cyano‐3,11‐dioxo‐18β‐olean‐1,12‐dien‐30‐oate (CDODA‐Me) is a synthetic derivative of glycyrrhetinic acid, a triterpenoid phytochemical found in licorice extracts. CDODA‐Me inhibited growth of RKO and SW480 colon cancer cells and this was accompanied by decreased expression of Sp1, Sp3 and Sp4 protein and mRNA and several Sp‐dependent genes including survivin, vascular endothelial growth factor (VEGF), and VEGF receptor 1 (VEGFR1 or Flt‐1). CDODA‐Me also induced apoptosis, arrested RKO and SW480 cells at G2/M, and inhibited tumor growth in athymic nude mice bearing RKO cells as xenografts. CDODA‐Me decreased expression of microRNA‐27a (miR‐27a), and this was accompanied by increased expression of 2 miR‐27a‐regulated mRNAs, namely ZBTB10 (an Sp repressor) and Myt‐1 which catalyzes phosphorylation of cdc2 to inhibit progression of cells through G2/M. Both CDODA‐Me and antisense miR‐27a induced comparable responses in RKO and SW480 cells, suggesting that the potent anticarcinogenic activity of CDODA‐Me is due to repression of oncogenic miR‐27a.


BMC Cancer | 2011

Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome- dependent and -independent downregulation of specificity proteins (Sp) transcription factors

Sudhakar Chintharlapalli; Sabitha Papineni; Ping Lei; Satya S. Pathi; Stephen Safe

BackgroundBetulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells.MethodsThe effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression.ResultsBA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10.ConclusionsThese results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.


Molecular Cancer Therapeutics | 2007

Structure-dependent activity of glycyrrhetinic acid derivatives as peroxisome proliferator–activated receptor γ agonists in colon cancer cells

Sudhakar Chintharlapalli; Sabitha Papineni; Indira Jutooru; Alan J. McAlees; Stephen Safe

Glycyrrhizin, a pentacyclic triterpene glycoside, is the major phytochemical in licorice. This compound and its hydrolysis product glycyrrhetinic acid have been associated with the multiple therapeutic properties of licorice extracts. We have investigated the effects of 2-cyano substituted analogues of glycyrrhetinic acid on their cytotoxicities and activity as selective peroxisome proliferator–activated receptor γ (PPARγ) agonists. Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (β-CDODA-Me) and methyl 2-cyano-3,11-dioxo-18α-olean-1,12-dien-30-oate (α-CDODA-Me) were more cytotoxic to colon cancer cells than their des-cyano analogues and introduction of the 2-cyano group into the pentacyclic ring system was necessary for the PPARγ agonist activity of α-CDODA-Me and β-CDODA-Me isomers. However, in mammalian two-hybrid assays, both compounds differentially induced interactions of PPARγ with coactivators, suggesting that these isomers, which differ only in the stereochemistry at C18 which affects conformation of the E-ring, are selective receptor modulators. This selectivity in colon cancer cells was shown for the induction of two proapoptotic proteins, namely caveolin-1 and the tumor-suppressor gene Krüppel-like factor-4 (KLF-4). β-CDODA-Me but not α-CDODA-Me induced caveolin-1 in SW480 colon cancer cells, whereas caveolin-1 was induced by both compounds in HT-29 and HCT-15 colon cancer cells. The CDODA-Me isomers induced KLF-4 mRNA levels in HT-29 and SW480 cells but had minimal effects on KLF-4 expression in HCT-15 cells. These induced responses were inhibited by cotreatment with a PPARγ antagonist. This shows for the first time that PPARγ agonists derived from glycyrrhetinic acid induced cell-dependent caveolin-1 and KLF-4 expression through receptor-dependent pathways. [Mol Cancer Ther 2007;6(5):1588–98]


Cancer Research | 2004

1,1-Bis(3′-indolyl)-1-(p-substitutedphenyl)methanes Induce Peroxisome Proliferator-Activated Receptor γ-Mediated Growth Inhibition, Transactivation, and Differentiation Markers in Colon Cancer Cells

Sudhakar Chintharlapalli; Roger Smith; Ismael Samudio; Wei Zhang; Stephen Safe

1,1-Bis(3′indolyl)-1–(p-substitutedphenyl)methanes containing p-trifluoromethyl (DIM-C-pPhCF3), p-t-butyl (DIM-C-pPhtBu), and p-phenyl (DIM-C-pPhC6H5) groups induce peroxisome proliferator-activated receptor γ (PPARγ)-mediated transactivation in HT-29, HCT-15, RKO, and SW480 colon cancer cell lines. Rosiglitazone also induces transactivation in these cell lines and inhibited growth of HT-29 cells, which express wild-type PPARγ but not HCT-15 cells, which express mutant (K422Q) PPARγ. In contrast, DIM-C-pPhCF3, DIM-C-pPhtBu, and DIM-C-pPhC6H5 inhibited growth of both HT-29 and HCT-15 cells with IC50 values ranging from 1 to 10 μmol/L. Rosiglitazone and diindolylmethane (DIM) analogues did not affect expression of cyclin D1, p21, or p27 protein levels or apoptosis in HCT-15 or HT-29 cells but induced keratin 18 in both cell lines. However, rosiglitazone induced caveolins 1 and 2 in HT-29 but not HCT-15 cells, whereas these differentiation markers were induced by DIM-C-pPhCF3 and DIM-C-pPhC6H5 in both cell lines. Because overexpression of caveolin 1 is known to suppress colon cancer cell and tumor growth, the growth inhibitory effects of rosiglitazone and the DIM compounds are associated with PPARγ-dependent induction of caveolins.


Carcinogenesis | 2009

Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met

Sabitha Papineni; Sudhakar Chintharlapalli; Maen Abdelrahim; Syng-Ook Lee; Robert C. Burghardt; Ala Abudayyeh; Cheryl H. Baker; Luis J. Herrera; Stephen Safe

The non-steroidal anti-inflammatory drug tolfenamic acid (TA) inhibits proliferation of SEG-1 and BIC-1 esophageal cancer cells with half-maximal growth inhibitory concentration values of 36 and 48 muM, respectively. TA also increased Annexin V staining in both cell lines, indicative of proapoptotic activity. Treatment of SEG-1 and BIC-1 cells with TA for up to 72 h decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and this was accompanied by decreased expression of the well-characterized Sp-regulated genes cyclin D1, vascular endothelial growth factor and survivin. TA also decreased hepatocyte growth factor receptor, (c-Met), a receptor tyrosine kinase that is overexpressed in esophageal cancer cells and tumors and is an important drug target. Knockdown of Sp1, Sp3 and Sp4 by RNA interference in SEG-1 and BIC-1 cells also decreased c-Met expression, demonstrating that c-Met is an Sp-regulated gene in esophageal cancer cells. Sp1 was overexpressed in esophageal cancer cells and tumors and increased Sp1 staining was observed in esophageal tumors from patients. TA (20 mg/kg/day) also decreased tumor growth and weight in athymic nude mice bearing SEG-1 cells as xenografts and this was accompanied by increased apoptosis and decreased Sp1 and c-Met staining in tumors from treated mice. Thus, TA-dependent downregulation of Sp transcription factors and c-Met defines a novel chemotherapeutic approach for treatment of esophageal cancer.


Molecular Cancer Therapeutics | 2008

1,1-Bis(3′-indolyl)-1-(p-chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth

Teruo Inamoto; Sabitha Papineni; Sudhakar Chintharlapalli; Sung Dae Cho; Stephen Safe; Ashish M. Kamat

Nurr1 is an orphan nuclear receptor and a member of the nerve growth factor I-B subfamily of transcription factors with no known endogenous ligand or stimulator. We show, for the first time, evidence that Nurr1 is expressed in a panel of 11 human bladder cancer cell lines. A new class of methylene-substituted diindolylmethanes (C-DIM) were screened and 1,1-bis(3′-indolyl)-1-(p-chlorophenyl)methane (DIM-C-pPhCl) activated the ligand-binding domain of Nurr1. Treatment of bladder cancer cells with Nurr1-active C-DIM resulted in decreased cell survival (MTT assay) and induction of cell death pathways, resulting in poly(ADP-ribose) polymerase cleavage and DNA fragmentation. The specificity of the Nurr1-active compound was shown using RNA interference in 253J B-V cells, whereby small interfering RNA against Nurr1 attenuated ligand-dependent activation of Nurr1 and poly(ADP-ribose) polymerase cleavage. Furthermore, activation of Nurr1 resulted in stimulation of tumor necrosis factor-related apoptosis-inducing ligand and small interfering RNA experiments attenuated tumor necrosis factor-related apoptosis-inducing ligand production. In an orthotopic model of human bladder tumors established in nude mice, administration of a Nurr1-active C-DIM suppressed bladder cancer growth. These results identify Nurr1 as a potential target for bladder cancer therapy and also identify a novel agent for activating Nurr1. [Mol Cancer Ther 2008;7(12):3825–33]

Collaboration


Dive into the Sudhakar Chintharlapalli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Dae Cho

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge