Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Syng-Ook Lee is active.

Publication


Featured researches published by Syng-Ook Lee.


Toxicological Sciences | 2013

Role of the Aryl Hydrocarbon Receptor in Carcinogenesis and Potential as a Drug Target

Stephen Safe; Syng-Ook Lee; Un-Ho Jin

The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.


Oncogene | 2012

Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer.

Kyounghyun Kim; Gayathri Chadalapaka; Syng-Ook Lee; Daisuke Yamada; Xavier Sastre-Garau; Pierre-Antoine Defossez; Yun-Yong Park; J. Lee; Stephen Safe

The human POK family members are transcription factors with a POZ domain and zinc-fingers that act primarily as transcriptional repressors. Several members of this family are involved in oncogenesis and this prompted us to assess whether expression levels of individual POK family members are associated with clinical outcomes in cancer. We have observed that ZBTB4 (zinc-finger and BTB domain containing 4) is downregulated in breast cancer patients, and that its expression is significantly correlated with relapse-free survival. Further integrative analysis of mRNA and microRNA (miR) expression data from the NCI-60 cell lines revealed an inverse correlation between ZBTB4 and oncogenic miRs derived from the miR-17-92 cluster and its paralogs. The experimental results using MDA-MB-231 and MCF-7 human breast cancer cells confirm that miRNAs derived from these clusters, containing miR-17-5p, miR-20a, miR-106a, miR-106b and miR-93, negatively regulate ZBTB4 expression. Overexpression of ZBTB4 or restoration of ZBTB4 by using an antagomir inhibit growth and invasion of breast cancer cells, and this effect is due, in part, to ZBTB4-dependent repression of the specificity protein 1 (Sp1), Sp3 and Sp4 genes, and subsequent downregulation of several Sp-dependent oncogenes, in part, through competition between ZBTB4 and Sp transcription factors for GC-rich promoter sequences. These results confirm that ZBTB4 functions as a novel tumor-suppressor gene with prognostic significance for breast cancer survival, and the oncogenic miR-17-92/ZBTB4/Sp axis may be a potential therapeutic target.


Cancer Research | 2010

Inactivation of the Orphan Nuclear Receptor TR3/Nur77 Inhibits Pancreatic Cancer Cell and Tumor Growth

Syng-Ook Lee; Maen Abdelrahim; Kyungsil Yoon; Sudhakar Chintharlapalli; Sabitha Papineni; Kyounghyun Kim; Huamin Wang; Stephen Safe

Activation of the orphan nuclear receptor TR3/Nur77 (NR4A1) promotes apoptosis and inhibits pancreatic tumor growth, but its endogenous function and the effects of its inactivation have yet to be determined. TR3 was overexpressed in human pancreatic tumors compared with nontumor tissue. Small interfering RNA-mediated knockdown of TR3 or cell treatment with the TR3 antagonist 1,1-bis(3-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) decreased proliferation, induced apoptosis, and decreased expression of antiapoptotic genes including Bcl-2 and survivin in pancreatic cancer cells. Survivin suppression was mediated by formation of a TR3-Sp1-p300 DNA binding complex on the proximal GC-rich region of the survivin promoter. When administered in vivo, DIM-C-pPhOH induced apoptosis and inhibited tumor growth in an orthotopic model of pancreatic cancer, associated with inhibition of the same antiapoptotic markers observed in vitro. Our results offer preclinical validation of TR3 as a drug target for pancreatic cancer chemotherapy, based on the ability of TR3 inhibitors to block the growth of pancreatic tumors.


Molecular Pharmacology | 2014

MICROBIOME-DERIVED TRYPTOPHAN METABOLITES AND THEIR ARYL HYDROCARBON RECEPTOR-DEPENDENT AGONIST AND ANTAGONIST ACTIVITIES

Un-Ho Jin; Syng-Ook Lee; Gautham V. Sridharan; Kyongbum Lee; Laurie A. Davidson; Arul Jayaraman; Robert S. Chapkin; Robert C. Alaniz; Stephen Safe

The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome.


PLOS ONE | 2012

Aspirin Inhibits Colon Cancer Cell and Tumor Growth and Downregulates Specificity Protein (Sp) Transcription Factors

Satya S. Pathi; Indira Jutooru; Gayathri Chadalapaka; Vijayalekshmi Nair; Syng-Ook Lee; Stephen Safe

Acetylsalicylic acid (aspirin) is highly effective for treating colon cancer patients postdiagnosis; however, the mechanisms of action of aspirin in colon cancer are not well defined. Aspirin and its major metabolite sodium salicylate induced apoptosis and decreased colon cancer cell growth and the sodium salt of aspirin also inhibited tumor growth in an athymic nude mouse xenograft model. Colon cancer cell growth inhibition was accompanied by downregulation of Sp1, Sp3 and Sp4 proteins and decreased expression of Sp-regulated gene products including bcl-2, survivin, VEGF, VEGFR1, cyclin D1, c-MET and p65 (NFκB). Moreover, we also showed by RNA interference that β-catenin, an important target of aspirin in some studies, is an Sp-regulated gene. Aspirin induced nuclear caspase-dependent cleavage of Sp1, Sp3 and Sp4 proteins and this response was related to sequestration of zinc ions since addition of zinc sulfate blocked aspirin-mediated apoptosis and repression of Sp proteins. The results demonstrate an important underlying mechanism of action of aspirin as an anticancer agent and, based on the rapid metabolism of aspirin to salicylate in humans and the high salicylate/aspirin ratios in serum, it is likely that the anticancer activity of aspirin is also due to the salicylate metabolite.


Carcinogenesis | 2009

Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met

Sabitha Papineni; Sudhakar Chintharlapalli; Maen Abdelrahim; Syng-Ook Lee; Robert C. Burghardt; Ala Abudayyeh; Cheryl H. Baker; Luis J. Herrera; Stephen Safe

The non-steroidal anti-inflammatory drug tolfenamic acid (TA) inhibits proliferation of SEG-1 and BIC-1 esophageal cancer cells with half-maximal growth inhibitory concentration values of 36 and 48 muM, respectively. TA also increased Annexin V staining in both cell lines, indicative of proapoptotic activity. Treatment of SEG-1 and BIC-1 cells with TA for up to 72 h decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and this was accompanied by decreased expression of the well-characterized Sp-regulated genes cyclin D1, vascular endothelial growth factor and survivin. TA also decreased hepatocyte growth factor receptor, (c-Met), a receptor tyrosine kinase that is overexpressed in esophageal cancer cells and tumors and is an important drug target. Knockdown of Sp1, Sp3 and Sp4 by RNA interference in SEG-1 and BIC-1 cells also decreased c-Met expression, demonstrating that c-Met is an Sp-regulated gene in esophageal cancer cells. Sp1 was overexpressed in esophageal cancer cells and tumors and increased Sp1 staining was observed in esophageal tumors from patients. TA (20 mg/kg/day) also decreased tumor growth and weight in athymic nude mice bearing SEG-1 cells as xenografts and this was accompanied by increased apoptosis and decreased Sp1 and c-Met staining in tumors from treated mice. Thus, TA-dependent downregulation of Sp transcription factors and c-Met defines a novel chemotherapeutic approach for treatment of esophageal cancer.


Molecular Endocrinology | 2014

Minireview: Role Of Orphan Nuclear Receptors in Cancer and Potential as Drug Targets

Stephen Safe; Un-Ho Jin; Erik Hedrick; Alexandra Reeder; Syng-Ook Lee

The nuclear orphan receptors for which endogenous ligands have not been identified include nuclear receptor (NR)0B1 (adrenal hypoplasia congenita critical region on chromosome X gene), NR0B2 (small heterodimer partner), NR1D1/2 (Rev-Erbα/β), NR2C1 (testicular receptor 2), NR2C2 (testicular receptor 4), NR2E1 (tailless), NR2E3 (photoreceptor-specific NR [PNR]), NR2F1 chicken ovalbumin upstream promoter transcription factor 1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (v-erbA-related protein), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1), and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor-specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of adrenal hypoplasia congenita critical region on chromosome X gene for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric, and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration, and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate, and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.


Oncogene | 2012

The Nuclear Receptor TR3 Regulates mTORC1 Signaling in Lung Cancer Cells Expressing Wild-type p53

Syng-Ook Lee; Terrick Andey; Un-Ho Jin; Kyounghyun Kim; Mandip Sachdeva; Stephen Safe

The orphan nuclear receptor TR3 (NR41A and Nur77) is overexpressed in most lung cancer patients and is a negative prognostic factor for patient survival. The function of TR3 was investigated in non-small-cell lung cancer A549 and H460 cells, and knockdown of TR3 by RNA interference (siTR3) inhibited cancer cell growth and induced apoptosis. The prosurvival activity of TR3 was due, in part, to formation of a p300/TR3/ specificity protein 1 complex bound to GC-rich promoter regions of survivin and other Sp-regulated genes (mechanism 1). However, in p53 wild-type A549 and H460 cells, siTR3 inhibited the mTORC1 pathway, and this was due to activation of p53 and induction of the p53-responsive gene sestrin 2, which subsequently activated the mTORC1 inhibitor AMP-activated protein kinase α (AMPKα) (mechanism 2). This demonstrates that the pro-oncogenic activity of TR3 in lung cancer cells was due to inhibition of p53 and activation of mTORC1. 1,1-Bis(3’-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) is a recently discovered inhibitor of TR3, which mimics the effects of siTR3. DIM-C-pPhOH inhibited growth and induced apoptosis in lung cancer cells and lung tumors in murine orthotopic and metastatic models, and this was accompanied by decreased expression of survivin and inhibition of mTORC1 signaling, demonstrating that inactivators of TR3 represent a novel class of mTORC1 inhibitors.


Molecular Pharmacology | 2010

Activation of nerve growth factor-induced Bα by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth

Sung Dae Cho; Syng-Ook Lee; Sudhakar Chintharlapalli; Maen Abdelrahim; Shaheen Khan; Kyungsil Yoon; Ashish M. Kamat; Stephen Safe

Nerve growth factor-induced B (NGFI-B) genes are orphan nuclear receptors, and NGFI-Bα (Nur77, TR3) is overexpressed in bladder tumors and bladder cancer cells compared with nontumorous bladder tissue. 1,1-Bis(3′-indolyl)-1-(p-methoxyphenyl)-methane (DIM-C-pPhOCH3) and 1,1-bis(3′-indolyl)-1-(p-phenyl)methane have previously been identified as activators of Nur77, and both compounds inhibited growth and induced apoptosis of UC-5 and KU7 bladder cancer cells. The proapoptotic effects of methylene-substituted diindolylmethanes (C-DIMs) were unaffected by cotreatment with leptomycin B and were dependent on nuclear Nur77, and RNA interference with a small inhibitory RNA for Nur77 (iNur77) demonstrated that C-DIM-induced activation of apoptosis was Nur77-dependent. Microarray analysis of DIM-C-pPhOCH3-induced genes in UC-5 bladder cancer cells showed that this compound induced multiple Nur77-dependent proapoptotic or growth inhibitory genes including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), cystathionase, p21, p8, and sestrin-2. DIM-C-pPhOCH3 (25 mg/kg/d) also induced apoptosis and inhibited tumor growth in athymic nude mice bearing KU7 cells as xenografts, demonstrating that Nur77-active C-DIMs exhibit potential for bladder cancer chemotherapy by targeting Nur77, which is overexpressed in this tumor type.


Journal of Pharmacology and Experimental Therapeutics | 2012

Aryl Hydrocarbon Receptor (AHR)-Active Pharmaceuticals Are Selective AHR Modulators in MDA-MB-468 and BT474 Breast Cancer Cells

Un Ho Jin; Syng-Ook Lee; Stephen Safe

Leflunomide, flutamide, nimodipine, mexiletine, sulindac, tranilast, 4-hydroxytamoxifen, and omeprazole are pharmaceuticals previously characterized as aryl hydrocarbon receptor (AHR) agonists in various cell lines and animal models. In this study, the eight AHR-active pharmaceuticals were investigated in highly aggressive aryl hydrocarbon (Ah)-responsive BT474 and MDA-MB-468 breast cancer cell lines, and their effects on AHR protein, CYP1A1 (protein and mRNA), CYP1B1 (mRNA), and cell migration were determined. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was used as a positive control. The AHR agonist activities of the pharmaceuticals depended on structure, response, and cell context. Most compounds induced one or more AHR-mediated responses in BT474 cells, whereas in Ah-responsive MDA-MB-468 cells effects of the AHR-active pharmaceuticals were highly variable. 4-Hydroxytamoxifen, mexiletine, and tranilast did not induce CYP1A1 in MDA-MB-468 cells; moreover, in combination with TCDD, mexiletine was a potent AHR antagonist, tranilast was a partial antagonist, and 4-hydroxytamoxifen also exhibited some AHR antagonist activity. Omeprazole and, to a lesser extent, sulindac and leflunomide were full and partial AHR agonists, respectively, in both breast cancer cell lines. These data indicate that the AHR-active pharmaceuticals are selective AHR modulators, and applications of these drugs for targeting the AHR must be confirmed by studies using the most relevant cell context.

Collaboration


Dive into the Syng-Ook Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Dae Cho

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge