Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suelen Silvana dos Santos is active.

Publication


Featured researches published by Suelen Silvana dos Santos.


Cellular Microbiology | 2015

Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans.

Gabriele Vargas; Juliana Dutra B. Rocha; Débora L. Oliveira; Priscila C. Albuquerque; Susana Frases; Suelen Silvana dos Santos; Joshua D. Nosanchuk; Andre M. O. Gomes; Lia Carolina Soares Medeiros; Kildare Miranda; Tiago J. P. Sobreira; Ernesto S. Nakayasu; Emma Arigi; Arturo Casadevall; Allan J. Guimarães; Marcio L. Rodrigues; Célio G. Freire-de-Lima; Igor C. Almeida; Leonardo Nimrichter

The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans‐cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow‐derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin‐layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)‐12, transforming growth factor‐beta (TGF‐β) and IL‐10. Similarly, EV‐treated DC produced IL‐12p40, IL‐10 and tumour necrosis factor‐alpha. In addition, EV treatment induced the up‐regulation of CD86 and major histocompatibility complex class‐II (MHC‐II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.


PLOS Pathogens | 2014

Involvement of a 1-Cys peroxiredoxin in bacterial virulence.

Gilberto Hideo Kaihami; José Roberto Fogaça de Almeida; Suelen Silvana dos Santos; Luis Eduardo Soares Netto; Sandro Rogério de Almeida; Regina L. Baldini

The killing of bacterial pathogens by macrophages occurs via the oxidative burst and bacteria have evolved to overcome this challenge and survive, using several virulence and defense strategies, including antioxidant mechanisms. We show here that the 1-Cys peroxiredoxin LsfA from the opportunistic pathogen Pseudomonas aeruginosa is endowed with thiol-dependent peroxidase activity that protects the bacteria from H2O2 and that this protein is implicated in pathogenicity. LsfA belongs to the poorly studied Prx6 subfamily of peroxiredoxins. The function of these peroxiredoxins has not been characterized in bacteria, and their contribution to host-pathogen interactions remains unknown. Infection of macrophages with the lsfA mutant strains resulted in higher levels of the cytokine TNF-α production due to the activation of the NF-kB and MAPK pathways, that are partially inhibited by the wild-type P. aeruginosa strain. A redox fluorescent probe was more oxidized in the lsfA mutant-infected macrophages than it was in the macrophages infected with the wild-type strain, suggesting that the oxidative burst was overstimulated in the absence of LsfA. Although no differences in the phagocytosis rates were observed when macrophages were infected with wild-type and mutant bacteria in a gentamicin exclusion assay, a higher number of wild-type bacterial cells was found in the supernatant. This difference was not observed when macrophages were pre-treated with a NADPH oxidase inhibitor, confirming the role of LsfA in the bacterial resistance to ROS generated via NADPH oxidase. In an acute pneumonia model, mice infected with the mutant strains presented higher cytokine release in the lungs and increased activated neutrophil recruitment, with reduced bacterial burden and improved survival rates compared to mice infected with the wild-type bacteria. LsfA is the first bacterial 1-Cys Prx shown to modulate host immune responses and its characterization will allow a better understanding of the role of redox signaling in host-pathogen interactions.


PLOS ONE | 2011

Paracoccidioides brasilinsis-Induced Migration of Dendritic Cells and Subsequent T-Cell Activation in the Lung-Draining Lymph Nodes

Suelen Silvana dos Santos; Karen Spadari Ferreira; Sandro Rogério de Almeida

Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb), that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th) response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th) response.


PLOS ONE | 2011

Dendritic Cells Transfected with scFv from Mab 7.B12 Mimicking Original Antigen gp43 Induces Protection against Experimental Paracoccidioidomycosis

Karen Spadari Ferreira; Andrea Queiroz Maranhão; Maria Concebida da Cunha Garcia; Marcelo M. Brigido; Suelen Silvana dos Santos; José Daniel Lopes; Sandro Rogério de Almeida

Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naïve T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model.


Frontiers in Microbiology | 2017

Comparative Genomics of Sibling Species of Fonsecaea Associated with Human Chromoblastomycosis

Vania A. Vicente; Vinicius A. Weiss; Amanda Bombassaro; Leandro F. Moreno; Flávia F. Costa; Roberto Tadeu Raittz; Aniele C. R. Leão; Renata R. Gomes; Anamélia Lorenzetti Bocca; Gheniffer Fornari; Raffael Júnio Araújo de Castro; Jiufeng Sun; Helisson Faoro; Michelle Z. Tadra-Sfeir; Valter A. Baura; Eduardo Balsanelli; Sandro Rogério de Almeida; Suelen Silvana dos Santos; Marcus de Melo Teixeira; Maria Sueli Soares Felipe; Mariana Machado Fidelis do Nascimento; Fábio O. Pedrosa; Maria B. R. Steffens; Derlene Attili-Angelis; Mohammad Javad Najafzadeh; Flavio Queiroz-Telles; Emanuel Maltempi de Souza; Sybren de Hoog

Fonsecaea and Cladophialophora are genera of black yeast-like fungi harboring agents of a mutilating implantation disease in humans, along with strictly environmental species. The current hypothesis suggests that those species reside in somewhat adverse microhabitats, and pathogenic siblings share virulence factors enabling survival in mammal tissue after coincidental inoculation driven by pathogenic adaptation. A comparative genomic analysis of environmental and pathogenic siblings of Fonsecaea and Cladophialophora was undertaken, including de novo assembly of F. erecta from plant material. The genome size of Fonsecaea species varied between 33.39 and 35.23 Mb, and the core genomes of those species comprises almost 70% of the genes. Expansions of protein domains such as glyoxalases and peptidases suggested ability for pathogenicity in clinical agents, while the use of nitrogen and degradation of phenolic compounds was enriched in environmental species. The similarity of carbohydrate-active vs. protein-degrading enzymes associated with the occurrence of virulence factors suggested a general tolerance to extreme conditions, which might explain the opportunistic tendency of Fonsecaea sibling species. Virulence was tested in the Galleria mellonella model and immunological assays were performed in order to support this hypothesis. Larvae infected by environmental F. erecta had a lower survival. Fungal macrophage murine co-culture showed that F. erecta induced high levels of TNF-α contributing to macrophage activation that could increase the ability to control intracellular fungal growth although hyphal death were not observed, suggesting a higher level of extremotolerance of environmental species.


Microbes and Infection | 2016

Infection with Paracoccidioides brasiliensis induces B-1 cell migration and activation of regulatory T cells.

Vanessa Noal; Suelen Silvana dos Santos; Karen Spadari Ferreira; Sandro Rogério de Almeida

Paracoccidioidomycosis is a systemic mycosis endemic to Latin America. The infection is initiated by inhalation of conidia into the lung and may develop as localized or disseminated disease depending on the depression of cellular immunity. In the present study, we observed that intratracheal infection with Paracoccidioides brasiliensis caused the percentage of resident B-1 cells to decrease. Using xid mice reconstituted with B-1 cells, we observed that B-1 cells migrate to the spleen and stimulate increases in the regulatory T cell subpopulation in response to P. brasiliensis infection. Collectively, these data demonstrate an active role for B-1 cells in susceptibility to paracoccidioidomycosis.


Mycopathologia | 2018

Notch Signaling is Required for Dendritic Cell Maturation and T Cell Expansion in Paracoccidioidomycosis

Grasielle Pereira Jannuzzi; José Roberto Fogaça de Almeida; Suelen Silvana dos Santos; Sandro Rogério de Almeida; Karen Spadari Ferreira

The Notch signaling pathway participates in several cellular functional aspects. This signaling has an important role in targeting both DC maturation and DC-mediated T cell responses. Thus, it is essential to investigate the influence of this signaling pathway in the role played by DCs in the pathogenesis of experimental paracoccidioidomycosis. This disease is a granulomatous and systemic mycosis that mainly affects lung tissue and can spread to any other organ and system. In this study, we demonstrated that bone marrow-derived DCs infected with yeasts from Paracoccidioides brasiliensis strain 18 performed efficiently their maturation after the activation of Notch signaling, with an increase in CD80, CD86, CCR7, and CD40 expression and the release of cytokines such as IL-6 and TNF-α. We observed that the inhibition of the γ-secretase DAPT impaired the proliferation of T cells induced by DC stimulation. In conclusion, our data suggest that Notch signaling contributes effectively to the maturation of DCs and the DC-mediated activation of the T cell response in P. brasiliensis infections.


Medical Mycology | 2018

The importance of Toll-like receptor 4 during experimental Sporothrix brasiliensis infection

Luana Rossato; Suelen Silvana dos Santos; Lucas Gonçalves Ferreira; Sandro Rogério de Almeida

Here we investigated the importance of Toll-like receptor 4 (TLR-4) in innate immune response to Sporothrix brasiliensis, a virulent fungus of Sporothrix spp. In vitro assays, using C57Bl/6 (wild type [WT]) bone marrow-derived macrophages (BMDMs), and TLR-4 knockout (TLR-4-/-) showed that the absence of TLR-4 resulted in impaired phagocytosis and lower levels of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and nitric oxide. In vivo assays were also performed, and the mice (WT and TLR-4-/-) were intraperitoneally infected with S. brasiliensis yeast ATCC MyA-4831 and euthanized on days 7, 14, and 28 postinfection, with the following parameters evaluated: fungal burden in liver, spleen, kidney, and brain, and the production of cytokines interferon γ (IFN-γ), TNF-α, IL-2, IL-4, IL-6, and IL-10. The results demonstrate the macrophages dependency on TLR-4 for inflammatory activation and in the absence of TLR-4 during experimental S. brasiliensis infection enhanced dissemination occurred after 14 and 28 days. These data show that TLR-4 signals are important for the recognition of S. brasiliensis by macrophages, and their absence promotes the persistence of the infection.


Frontiers in Microbiology | 2018

A Model for Trans-Kingdom Pathogenicity in Fonsecaea Agents of Human Chromoblastomycosis

Gheniffer Fornari; Renata R. Gomes; Juliana Degenhardt-Goldbach; Suelen Silvana dos Santos; Sandro Rogério de Almeida; Germana D. Santos; Marisol Dominguez Muro; Cleusa Bona; Rosana Herminia Scola; Edvaldo S. Trindade; Israel Henrique Bini; Lisandra Santos Ferreira-Maba; Daiane Rigoni Kestring; Mariana Machado Fidelis do Nascimento; Bruna Jacomel Favoreto de Souza Lima; Morgana Ferreira Voidaleski; Douglas André Steinmacher; Bruna da Silva Soley; Shuwen Deng; Anamélia Lorenzetti Bocca; Moisés Batista da Silva; Claudio Guedes Salgado; Conceição Maria Pedroso e Silva de Azevedo; Vania A. Vicente; Sybren de Hoog

The fungal genus Fonsecaea comprises etiological agents of human chromoblastomycosis, a chronic implantation skin disease. The current hypothesis is that patients acquire the infection through an injury from plant material. The present study aimed to evaluate a model of infection in plant and animal hosts to understand the parameters of trans-kingdom pathogenicity. Clinical strains of causative agents of chromoblastomycosis (Fonsecaea pedrosoi and Fonsecaea monophora) were compared with a strain of Fonsecaea erecta isolated from a living plant. The clinical strains of F. monophora and F. pedrosoi remained concentrated near the epidermis, whereas F. erecta colonized deeper plant tissues, resembling an endophytic behavior. In an invertebrate infection model with larvae of a beetle, Tenebrio molitor, F. erecta exhibited the lowest survival rates. However, F. pedrosoi produced dark, spherical to ovoidal cells that resembled muriform cells, the invasive form of human chromoblastomycosis confirming the role of muriform cells as a pathogenic adaptation in animal tissues. An immunologic assay in BALB/c mice demonstrated the high virulence of saprobic species in animal models was subsequently controlled via host higher immune response.


Experimental Diabetes Research | 2018

Insulin Modulates Paracoccidioides brasiliensis-Induced Inflammation by Restoring the Populations of NK Cells, Dendritic Cells, and B Lymphocytes in Lungs

Felipe Beccaria Casagrande; Sabrina S. Ferreira; Fernanda Peixoto Barbosa Nunes; Lavínia Maria Dal’Mas Romera; Suelen Silvana dos Santos; Fernando H. G. Tessaro; Paula Regina de Souza; Sandro Rogério de Almeida; Joilson O. Martins

Paracoccidioidomycosis, a key issue for Brazilian health service, can be aggravated in patients with impaired immunological responses, such as diabetic patients. We evaluated the role of insulin in inflammatory parameters in diabetic and nondiabetic mice using a systemic mycosis Paracoccidioides brasiliensis (Pb) model. Diabetic C57BL-6 mice and controls were infected with Pb18 and treated with insulin for 12 days prior to experiments. After 55 days, infected diabetic mice exhibited fewer leukocytes in both peritoneal lavage fluid (PeLF) and bronchoalveolar lavage fluid and reduced secretion of interleukin- (IL-) 6 in lungs. In addition, diabetic mice presented a reduced influx of TCD4+ cells, TCD8+ cells, B lymphocytes, NK cells, and dendritic cells compared to control infected groups. Insulin treatment restored the leukocyte number in PeLF and restored the presence of B lymphocytes, dendritic cells, and NK cells in lungs of diabetic animals. The data suggest that diabetic mice present impaired immunological response to Pb18 infection and insulin modulates inflammation by reducing IL-6 levels in lung and CINC-1 levels in spleen and liver homogenates, restoring leukocyte concentrations in PeLF and also restoring populations of dendritic cells and B lymphocytes in lungs of diabetic mice, permitting the host to better control the infection.

Collaboration


Dive into the Suelen Silvana dos Santos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Spadari Ferreira

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gheniffer Fornari

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renata R. Gomes

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Vania A. Vicente

Federal University of Paraná

View shared research outputs
Top Co-Authors

Avatar

Sybren de Hoog

Centraalbureau voor Schimmelcultures

View shared research outputs
Top Co-Authors

Avatar

Allan J. Guimarães

Federal Fluminense University

View shared research outputs
Researchain Logo
Decentralizing Knowledge