Suelynn Choy
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suelynn Choy.
Journal of Geophysical Research | 2014
Yubin Yuan; Kefei Zhang; Witold Rohm; Suelynn Choy; Robert Norman; Chuan-Sheng Wang
Sensing of precipitable water vapor (PWV) using the Global Positioning System (GPS) has been intensively investigated in the past 2 decades. However, it still remains a challenging task at a high temporal resolution and in the real-time mode. In this study the accuracy of real-time zenith total delay (ZTD) and PWV using the GPS precise point positioning (PPP) technique is investigated. GPS observations in a 1 month period from 20 globally distributed stations are selected for testing. The derived real-time ZTDs at most stations agree well with the tropospheric products from the International Global Navigation Satellite Systems Service, and the root-mean-square errors (RMSEs) are <13 mm, which meet the threshold value of 15 mm if ZTDs are input to numerical weather prediction models. The RMSE of the retrieved PWVs in comparison with the radiosonde-derived values are <= 3 mm, which is the threshold RMSE of PWVs as inputs to weather nowcasting. The theoretical accuracy of PWVs is also discussed, and 3 mm quality of PWVs is proved achievable in different temperature and humidity conditions. This implies that the real-time GPS PPP technique can be complementary to current atmospheric sounding systems, especially for nowcasting of extreme weather due to its real-time, all-day, and all-weather capabilities and high temporal resolutions.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2015
Kefei Zhang; Toby Manning; Suqin Wu; Witold Rohm; David Silcock; Suelynn Choy
Rapid developments in satellite positioning, navigation, and timing have revolutionized surveying and mapping practice and significantly influenced the way people live and society operates. The advent of new generation global navigation satellite systems (GNSS) has heralded an exciting future for not only the GNSS community, but also many other areas that are critical to our society at large. With the rapid advances in space-based technologies and new dedicated space missions, the availability of large scale and dense contemporary GNSS networks such as regional continuously operating reference station (CORS) networks and the developments of new algorithms and methodologies, the ability of using space geodetic techniques to remotely sense the atmosphere (i.e., the troposphere and ionosphere) has dramatically improved. Real time GNSS-derived atmospheric variables with a high spatio-temporal resolution have become an important new source of measurements for meteorology, particularly for extreme weather events since water vapour (WV), as the most abundant element of greenhouse gas and accounting for ~70% of global warming, is under-sampled in current meteorological and climate observing systems. This study investigates the emerging area of GNSS technology for near real-time monitoring and forecasting of severe weather and climate change research. This includes both ground-based global positioning system (GPS)-derived precipitable water vapour (PWV) estimation and four-dimensional (4-D) tomographic modeling for wet refractivity fields. Two severe weather case studies were used to investigate the signature of GPS-derived PWV and wet refractivity derived from the 4-D GPS tomographic model under the influence of severe mesoscale convective systems (MCSs). GPS observations from the Victorian state-wide CORS network, i.e., GPSnet, in Australia were used. Results showed strong spatial and temporal correlations between the variations in the ground-based GPS-derived PWV and the passage of the severe MCS. This indicates that the GPS method can complement conventional meteorological observations for the studying, monitoring, and potentially predicting of severe weather events. The advantage of using the ground-based GPS technique is that it can provide continuous observations for the storm passage with high temporal and spatial resolution. Results from these two case studies also suggest that GPS-derived PWV can resolve the synoptic signature of the dynamics and offer precursors to severe weather, and the tomographic technique has the potential to depict the three-dimensional (3-D) signature of wet refractivity for the convective and stratiform processes evident in MCS events. This research reveals the potential of using GNSS-derived PWV to strengthen numerical weather prediction (NWP) models and forecasts, and the potential for GNSS-derived PWV and wet refractivity fields to enhance early detection and sensing of severe weather.
Gps Solutions | 2017
Suelynn Choy; Sunil Bisnath; Chris Rizos
Within the last decade, GNSS Precise Point Positioning (PPP) has generated unprecedented interest among the GNSS community and is being used for a number of scientific and commercial applications today. Similar to the conventional relative positioning technique, PPP could provide positioning solutions at centimeter-level precision by making use of the precise carrier phase measurements and high-accuracy satellite orbits and clock corrections provided by, for example, the International GNSS Service. The PPP technique is attractive as it is computationally efficient; it eliminates the need for simultaneous observations at both the reference and rover receivers; it also eliminates the needs for the rover receiver to operate within the vicinity of the reference receiver; and it provides homogenous positioning quality within a consistent global frame anywhere in the world with a single GNSS receiver. Although PPP has definite advantages for many applications, its merits and widespread adoption are significantly limited by the long convergence time, which restricts the use of the PPP technique for many real-time GNSS applications. We provide an overview of the current performance of PPP as well as attempt to address some of the common misconceptions of this positioning technique—considered by many as the future of satellite positioning and navigation. Given the upcoming modernization and deployment of GNSS satellites over the next few years, it would be appropriate to address the potential impacts of these signals and constellations on the future prospect of PPP.
Journal of Navigation | 2015
Suelynn Choy; Ken Harima; Yong Li; Mazher Choudhury; Chris Rizos; Yaka Wakabayashi; Satoshi Kogure
The Japanese Quasi-Zenith Satellite System (QZSS) is a regional satellite navigation system capable of transmitting navigation signals that are compatible and interoperable with other Global Navigation Satellite Systems (GNSS). In addition to navigation signals, QZSS also transmits augmentation signals, e.g. the L-band Experimental (LEX) signal. The LEX signal is unique for QZSS in delivering correction messages such as orbits and clock information that enable real-time Precise Point Positioning (PPP). This study aims to evaluate the availability of the LEX signal as well as the quality of the broadcast correction messages for real-time PPP applications. The system is tested in both static and kinematic positioning modes. The results show that the availability of the LEX signal is 60% when the QZSS satellite elevation is at 30° and above 90% when the satellite is above 40° elevation. Centimetre-level position accuracy can be obtained for static PPP processing after two hours of convergence using the current MADOCA-LEX (Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis) correction messages transmitted on the LEX signal; and decimetre-level point positioning accuracy can be obtained for kinematic PPP processing.
Advances in Meteorology | 2015
Suelynn Choy; Chuan-Sheng Wang; Ta-Kang Yeh; John Dawson; Minghai Jia; Yuriy Kuleshov
We present a comparison of atmospheric precipitable water vapor (PWV) derived from ground-based global positioning system (GPS) receiver with traditional radiosonde measurement and very long baseline interferometry (VLBI) technique for a five-year period (2008–2012) using Australian GPS stations. These stations were selectively chosen to provide a representative regional distribution of sites while ensuring conventional meteorological observations were available. Good agreement of PWV estimates was found between GPS and VLBI comparison with a mean difference of less than 1 mm and standard deviation of 3.5 mm and a mean difference and standard deviation of 0.1 mm and 4.0 mm, respectively, between GPS and radiosonde measurements. Systematic errors have also been discovered during the course of this study, which highlights the benefit of using GPS as a supplementary atmospheric PWV sensor and calibration system. The selected eight GPS sites sample different climates across Australia covering an area of approximately 30° NS/EW. It has also shown that the magnitude and variation of PWV estimates depend on the amount of moisture in the atmosphere, which is a function of season, topography, and other regional climate conditions.
Geo-spatial Information Science | 2017
Peter Woodgate; Isabel Coppa; Suelynn Choy; Stuart R. Phinn; Lesley Arnold; Matt Duckham
Abstract This paper examines the current state of three of the key areas of geospatial science in Australia: positioning; earth observation (EO); and spatial infrastructures. The paper discusses the limitations and challenges that will shape the development of these three areas of geospatial science over the next decade and then profiles what each may look like in about 2026. Australia’s national positioning infrastructure plan is guiding the development of a nation-wide, sub decimeter, real-time, outdoor positioning capability based on multi-GNSS and in particular the emerging precise point positioning − real-time kinematic (PPP-RTK) capability. Additional positioning systems including the ground-based Locata system, location-based indoor systems, and beacons, among others are also discussed. The importance of the underpinning role of a next generation dynamic datum is considered. The development of Australia’s first EO strategy is described along with the key national needs of the products of remote sensing. The development of massive on-line multi-decadal geospatial imagery data stores and processing engines for co-registered stacks of continuous base-line satellite imagery are explored. Finally, perspectives on the evolution of a future spatial knowledge infrastructure (SKI) emerging from today’s traditional spatial data infrastructures (SDIs) are provided together with discussion of the growing importance of geospatial analytics for transforming whole supply chains.
Computers, Environment and Urban Systems | 2016
Suelynn Choy; John Handmer; Joshua Whittaker; Yuki Shinohara; Tomohiro Hatori; Naohiko Kohtake
One of the key responsibilities of any government is to communicate and disseminate safety information and warnings to the general public in case of an emergency. Traditionally, warnings are issued by the government through a broadcast approach using communication channels such as TV and radio. However this monopolistic approach is now challenged by new technologies and media capable of providing individualised warnings to personal mobile devices. Location-based emergency services and mobile alerts are becoming increasingly prevalent in the provision of emergency warnings. These new modes of emergency services have been adopted by several countries worldwide including Australia. One example is the Australian National Emergency Alert (EA) which is a telephone-based service enhanced with location-based capabilities. This paper introduces the concept of applying global satellite navigation systems such as the Japanese satellite system in the domain of emergency warning and alerting. The Japanese satellite warning system can be tailored to transmit real-time location-based emergency warnings to peoples mobile devices while not being constrained by the limitations of ground-based communication technologies. A key advantage of satellite based communication is its high resilience to communication network overload and failure of ground systems and network infrastructure during a disaster. This enables people to obtain necessary information anywhere (outdoor) and anytime during times of disaster. A satellite-based warning system could also be integrated with existing warning services and be used as a complementary technology. This paper examines opportunities and challenges for using satellite navigation systems to deliver warnings and safety messages during emergencies and disasters.
Australian Journal of Earth Sciences | 2014
Chuan-Sheng Wang; R. Norman; Ta-Kang Yeh; Kefei Zhang; T.-P. Tseng; Suelynn Choy
GPS Radio Occultation (RO) is a space-based technique for sounding the Earths atmosphere. This technique has demonstrated great potential for improving numerical weather prediction and climate monitoring. This investigation utilises FORMOSAT-3/COSMIC RO data to identify the differences between the results obtained using two different data processing packages – the Radio Occultation Processing Package (ROPP) and the COSMIC Data Analysis and Archive Center (CDAAC) software package. The introduced RO measurements for two software packages are all obtained from CDAAC dataset. This study analyses 20,210 events located in the Australian region in the year 2010. The results of this study show a negative bias between the two software packages in the bending angle at heights below approximately 5 km. The refractivity also shows a negative bias, which is consistent with previous results from the Global Navigation Satellite System Receiver for Atmospheric Sounding Satellite Application Facilities (GRAS SAF) report. A negative bias between the two processing software packages also appears for the pressure parameter at all heights and for dry temperatures from 5 to 16 km in height. The height intervals showing differences less than 1% in the bending angle, refractivity, pressure and dry temperatures are 0–25 km, 0–16 km, 0–16 km and 6–23 km, respectively. In general, the differences between the ROPP and CDAAC processing methods in the bending angle, refractivity, and pressure increase with altitude but are always less than 3%. The difference in dry temperature is also less than 3% at heights greater than 5 km, but it is larger at heights below 5 km.
Gps Solutions | 2017
Suelynn Choy; Joost Kuckartz; Andrew G. Dempster; Chris Rizos; Matt Higgins
We provided an overview of various satellite-based augmentation systems (SBAS) options for augmented GNSS services in Australia, and potentially New Zealand, with the aim to tease out key similarities and differences in their augmentation capabilities. SBAS can technically be classified into two user categories, namely SBAS for aviation and “non-aviation” SBAS. Aviation SBAS is an International Civil Aviation Organization (ICAO) certified civil aviation safety-critical system providing wide-area GNSS augmentation by broadcasting augmentation information using geostationary satellites. The primary aim was to improve integrity, availability and accuracy of basic GNSS signals for aircraft navigation. On the other hand, “non-aviation” SBAS support numerous GNSS applications using positioning techniques such as wide-area differential-GNSS (DGNSS) and precise point positioning (PPP). These services mainly focus on delivering high-accuracy positioning solutions and guaranteed levels of availability, and integrity remains secondary considerations. Next-generation GNSS satellites capable of transmitting augmentation signals in the L1, L5 and L6 frequency bands will also be explored. These augmentation signals have the data capacity to deliver a range of augmentation services such as SBAS, wide-area DGNSS and PPP, to meet the demands of various industry sectors. In addition, there are well-developed plans to put in place next-generation dual-frequency multi-constellation SBAS for aviation. Multi-constellation GNSS increases robustness against potential degradation of core satellite constellations and extends the service coverage area. It is expected that next-generation SBAS and GNSS will improve accuracy, integrity, availability and continuity of GNSS performance.
Journal of Spatial Science | 2018
Suelynn Choy; Ken Harima
Abstract We present an overview of satellite delivery of GNSS precise corrections in support of Australia’s planned National Positioning Infrastructure (NPI) capability. Specifically, we describe the requirements for satellite delivery of GNSS precise point positioning (PPP) corrections and local ionospheric corrections. We also provide an overview of potential and available L-band communication and navigation satellites in the region for the delivery of precise GNSS corrections.