Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suhrud M. Rajguru is active.

Publication


Featured researches published by Suhrud M. Rajguru.


The Journal of Physiology | 2011

Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes

Gregory M. Dittami; Suhrud M. Rajguru; Richard A. Lasher; Robert W. Hitchcock; Richard D. Rabbitt

Non‐technical summary  We have investigated the mechanisms underlying the response of cells to pulsed infrared radiation (IR, ∼1862 nm) using the neonatal rat ventricular cardiomyocyte as a model. Fluorescence monitoring of the intracellular free calcium (Ca2+) demonstrated that infrared irradiation induced rapid (millisecond time scale) intracellular Ca2+ transients in the cells. The results showed that the Ca2+ transients were sufficient to elicit contractile responses from the cardiomyocytes and could be ‘paced’ or entrained to the pulsing frequency of the IR. Pharmacological results strongly implicate mitochondria as the primary intracellular organelles contributing to the IR‐evoked Ca2+ cycling.


Hearing Research | 2010

Optical cochlear implants: evaluation of surgical approach and laser parameters in cats.

Suhrud M. Rajguru; Agnella Izzo Matic; Alan M. Robinson; Andrew J. Fishman; Laura E. Moreno; Allison Bradley; Irena Vujanovic; Joe Breen; Jonathon D. Wells; Mark P. Bendett; Claus Peter Richter

Previous research has shown that neural stimulation with infrared radiation (IR) is spatially selective and illustrated the potential of IR in stimulating auditory neurons. The present work demonstrates the application of a miniaturized pulsed IR stimulator for chronic implantation in cats, quantifies its efficacy, and short-term safety in stimulating auditory neurons. IR stimulation of the neurons was achieved using an optical fiber inserted through a cochleostomy drilled in the basal turn of the cat cochlea and was characterized by measuring compound action potentials (CAPs). Neurons were stimulated with IR at various pulse durations, radiant exposures, and pulse repetition rates. Pulse durations as short as 50 mus were successful in evoking CAPs in normal as well as deafened cochleae. Continual stimulation was provided at 200 pulses per second, at 200 mW per pulse, and 100 mus pulse duration. Stable CAP amplitudes were observed for up to 10 h of continual IR stimulation. Combined with histological data, the results suggest that pulsed IR stimulation does not lead to detectable acute tissue damage and validate the stimulation parameters that can be used in future chronic implants based on pulsed IR.


The Journal of Physiology | 2011

Infrared photostimulation of the crista ampullaris

Suhrud M. Rajguru; Claus Peter Richter; Agnella Izzo Matic; Stephen M. Highstein; Gregory M. Dittami; Richard D. Rabbitt

Non‐technical summary  It has been shown previously that application of short pulses of optical energy at infrared wavelengths can evoke action potentials in neurons and mechanical contraction in cardiac muscle cells. Optical stimuli are particularly attractive because of the ability to deliver focused energy through tissue without physical contact or electrical charge injection. Here we demonstrate efficacy of pulsed infrared radiation to stimulate balance organs of the inner ear, specifically to modulate the pattern of neural signals transmitted from the angular motion sensing semicircular canals to the brain. The ability to control action potentials demonstrates the potential of pulsed optical stimuli for basic science investigations and future therapeutic applications.


international conference of the ieee engineering in medicine and biology society | 2002

Three-dimensional biomechanical model of benign paroxysmal positional vertigo

Suhrud M. Rajguru; Richard D. Rabbitt

A morphologically descriptive 3-canal mathematical model was developed to quantify the biomechanical origins of gravity-dependent semicircular canal responses under pathological conditions of canalithiasis and cupulolithiasis—conditions associated with the vestibular disorder benign paroxysmal positional vertigo (BPPV). The model describes the influence of displaced calcium carbonate debris (particles) located within the labyrinth on the time-dependent responses of the ampullary organs. The particles were modeled as spheres free to move in the canal lumen (canalithiasis) or adhered to a cupula (cupulolithiasis). The model predicts canal responses to the diagnostic Dix–Hallpike maneuver, and to a modified Epley canalith repositioning (CRP) treatment. Results for canalithiasis predict activation latencies and response magnitudes consistent with clinical observations during the Dix–Hallpike maneuver. The magnitude of the response evoked by the Dix–Hallpike test was primarily due to the total weight of the particles while the latency to peak response was due to the time required for the stone to move from the ampulla to the posterior apex of the canal. Results further illustrate the effectiveness of the Epley CRP in repositioning the particles and relieving the symptoms of the canalithiasis type of BPPV.


Journal of Neural Engineering | 2011

Spread of cochlear excitation during stimulation with pulsed infrared radiation: Inferior colliculus measurements

Claus Peter Richter; Suhrud M. Rajguru; Agnella Izzo Matic; E. L. Moreno; Andrew J. Fishman; Alan M. Robinson; Eul Suh; Joseph T. Walsh

Infrared neural stimulation (INS) has received considerable attention over the last few years. It provides an alternative method to artificially stimulate neurons without electrical current or the introduction of exogenous chromophores. One of the primary benefits of INS could be the improved spatial selectivity when compared with electrical stimulation. In the present study, we have evaluated the spatial selectivity of INS in the acutely damaged cochlea of guinea pigs and compared it to stimulation with acoustic tone pips in normal-hearing animals. The radiation was delivered via a 200 µm diameter optical fiber, which was inserted through a cochleostomy into the scala tympani of the basal cochlear turn. The stimulated section along the cochlear spiral ganglion was estimated from the neural responses recorded from the central nucleus of the inferior colliculus (ICC). ICC responses were recorded in response to cochlear INS using a multichannel penetrating electrode array. Spatial tuning curves (STCs) were constructed from the responses. For INS, approximately 55% of the activation profiles showed a single maximum, ∼22% had two maxima and ∼13% had multiple maxima. The remaining 10% of the profiles occurred at the limits of the electrode array and could not be classified. The majority of ICC STCs indicated that the spread of activation evoked by optical stimuli is comparable to that produced by acoustic tone pips.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012

The Cochlear Implant: Historical Aspects and Future Prospects

Adrien A. Eshraghi; Ronen Nazarian; Fred F. Telischi; Suhrud M. Rajguru; Eric Truy; Chhavi Gupta

The cochlear implant (CI) is the first effective treatment for deafness and severe losses in hearing. As such, the CI is now widely regarded as one of the great advances in modern medicine. This article reviews the key events and discoveries that led up to the current CI systems, and we review and present some among the many possibilities for further improvements in device design and performance. The past achievements include: (1) development of reliable devices that can be used over the lifetime of a patient; (2) development of arrays of implanted electrodes that can stimulate more than one site in the cochlea; and (3) progressive and large improvements in sound processing strategies for CIs. In addition, cooperation between research organizations and companies greatly accelerated the widespread availability and use of safe and effective devices. Possibilities for the future include: (1) use of otoprotective drugs; (2) further improvements in electrode designs and placements; (3) further improvements in sound processing strategies; (4) use of stem cells to replace lost sensory hair cells and neural structures in the cochlea; (5) gene therapy; (6) further reductions in the trauma caused by insertions of electrodes and other manipulations during implant surgeries; and (7) optical rather electrical stimulation of the auditory nerve. Each of these possibilities is the subject of active research. Although great progress has been made to date in the development of the CI, including the first substantial restoration of a human sense, much more progress seems likely and certainly would not be a surprise. Anat Rec, 2012.


Hearing Research | 2011

Infrared neural stimulation: Beam path in the guinea pig cochlea

Laura E. Moreno; Suhrud M. Rajguru; Agnella Izzo Matic; Nitin Yerram; Alan M. Robinson; Margaret Hwang; Stuart R. Stock; Claus Peter Richter

It has been demonstrated that INS can be utilized to stimulate spiral ganglion cells in the cochlea. Although neural stimulation can be achieved without direct contact of the radiation source and the tissue, the presence of fluids or bone between the target structure and the radiation source may lead to absorption or scattering of the radiation, which may limit the efficacy of INS. The present study demonstrates the neural structures in the radiation beam path that can be stimulated. Histological reconstructions and microCT of guinea pig cochleae stimulated with an infrared laser suggest that the orientation of the beam from the optical fiber determined the site of stimulation in the cochlea. Best frequencies of the INS-evoked neural responses obtained from the central nucleus of the inferior colliculus matched the histological sites in the spiral ganglion.


Stem Cells and Development | 2014

Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion.

Esperanza Bas; Thomas R. Van De Water; Vicente Lumbreras; Suhrud M. Rajguru; Garrett M. Goss; Joshua M. Hare; Bradley J. Goldstein

A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.


PLOS ONE | 2013

Behavioral and Electrophysiological Responses Evoked by Chronic Infrared Neural Stimulation of the Cochlea

Agnella Izzo Matic; Alan M. Robinson; Hunter K. Young; Ben Badofsky; Suhrud M. Rajguru; Stuart R. Stock; Claus Peter Richter

Infrared neural stimulation (INS) has been proposed as a novel method for neural stimulation. In order for INS to translate to clinical use, which would involve the use of implanted devices over years or decades, the efficacy and safety of chronic INS needs to be determined. We examined a population of cats that were chronically implanted with an optical fiber to stimulate the cochlea with infrared radiation, the first known chronic application of INS. Through behavioral responses, the cats demonstrate that stimulation occurs and a perceptual event results. Long-term stimulation did not result in a change in the electrophysiological responses, either optically-evoked or acoustically-evoked. Spiral ganglion neuron counts and post implantation tissue growth, which was localized at the optical fiber, were similar in chronically stimulated and sham implanted cochleae. Results from chronic INS experiments in the cat cochlea support future work toward INS-based neuroprostheses for humans.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012

Acute Damage Threshold for Infrared Neural Stimulation of the Cochlea: Functional and Histological Evaluation

Vinay Goyal; Suhrud M. Rajguru; Agnella Izzo Matic; Stuart R. Stock; Claus Peter Richter

This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0–127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea. Anat Rec, 2012.

Collaboration


Dive into the Suhrud M. Rajguru's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge