Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suhua Chang is active.

Publication


Featured researches published by Suhua Chang.


Nucleic Acids Research | 2010

i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study

Kunlin Zhang; Sijia Cui; Suhua Chang; Liuyan Zhang; Jing Wang

Genome-wide association study (GWAS) is nowadays widely used to identify genes involved in human complex disease. The standard GWAS analysis examines SNPs/genes independently and identifies only a number of the most significant SNPs. It ignores the combined effect of weaker SNPs/genes, which leads to difficulties to explore biological function and mechanism from a systems point of view. Although gene set enrichment analysis (GSEA) has been introduced to GWAS to overcome these limitations by identifying the correlation between pathways/gene sets and traits, the heavy dependence on genotype data, which is not easily available for most published GWAS investigations, has led to limited application of it. In order to perform GSEA on a simple list of GWAS SNP P-values, we implemented GSEA by using SNP label permutation. We further improved GSEA (i-GSEA) by focusing on pathways/gene sets with high proportion of significant genes. To provide researchers an open platform to analyze GWAS data, we developed the i-GSEA4GWAS (improved GSEA for GWAS) web server. i-GSEA4GWAS implements the i-GSEA approach and aims to provide new insights in complex disease studies. i-GSEA4GWAS is freely available at http://gsea4gwas.psych.ac.cn/.


Journal of Affective Disorders | 2013

The neural correlates of reward-related processing in major depressive disorder: A meta-analysis of functional magnetic resonance imaging studies

Weina Zhang; Suhua Chang; Guo Lp; Kunlin Zhang; Jing Wang

BACKGROUND A growing number of functional magnetic resonance imaging (fMRI) studies have been conducted in major depressive disorder (MDD) to elucidate reward-related brain functions. The aim of this meta-analysis was to examine the common reward network in the MDD brain and to further distinguish the brain activation patterns between positive stimuli and monetary rewards as well as reward anticipation and outcome. METHODS A series of activation likelihood estimation (ALE) meta-analyses were performed across 22 fMRI studies that examined reward-related processing, with a total of 341 MDD patients and 367 healthy controls. RESULTS We observed several frontostriatal regions that participated in reward processing in MDD. The common reward network in MDD was characterized by decreased subcortical and limbic areas activity and an increased cortical response. In addition, the cerebellum, lingual gyrus, parahippocampal gyrus and fusiform gyrus preferentially responded to positive stimuli in MDD, while the insula, precuneus, cuneus, PFC and inferior parietal lobule selectively responded to monetary rewards. Our results indicated a reduced caudate response during both monetary anticipation and outcome stages as well as increased activation in the middle frontal gyrus and dorsal anterior cingulate during reward anticipation in MDD. LIMITATIONS The reward-related tasks and mood states of patients included in our analysis were heterogeneous. CONCLUSIONS Our current findings suggest that there exist emotional or motivational pathway dysfunctions in MDD during reward-related processing. Future studies may be strengthened by paying careful attention to the types of reward used as well as the different components of reward processing examined.


Nucleic Acids Research | 2007

MethyCancer: the database of human DNA methylation and cancer

Ximiao He; Suhua Chang; Jiajie Zhang; Qian Zhao; Haizhen Xiang; Kanthida Kusonmano; Liu Yang; Zhong Sheng Sun; Huanming Yang; Jing Wang

Cancer is ranked as one of the top killers in all human diseases and continues to have a devastating effect on the population around the globe. Current research efforts are aiming to accelerate our understanding of the molecular basis of cancer and develop effective means for cancer diagnostics, treatment and prognosis. An altered pattern of epigenetic modifications, most importantly DNA methylation events, plays a critical role in tumorigenesis through regulating oncogene activation, tumor suppressor gene silencing and chromosomal instability. To study interplay of DNA methylation, gene expression and cancer, we developed a publicly accessible database for human DNA Methylation and Cancer (MethyCancer, http://methycancer.genomics.org.cn). MethyCancer hosts both highly integrated data of DNA methylation, cancer-related gene, mutation and cancer information from public resources, and the CpG Island (CGI) clones derived from our large-scale sequencing. Interconnections between different data types were analyzed and presented. Furthermore, a powerful search tool is developed to provide user-friendly access to all the data and data connections. A graphical MethyView shows DNA methylation in context of genomics and genetics data facilitating the research in cancer to understand genetic and epigenetic mechanisms that make dramatic changes in gene expression of tumor cells.


Psychiatry Research-neuroimaging | 2014

Molecular genetic studies of ADHD and its candidate genes: a review.

Zhao Li; Suhua Chang; Liuyan Zhang; Lei Gao; Jing Wang

Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset psychiatric disorder with high heritability. In recent years, numerous molecular genetic studies have been published to investigate susceptibility loci for ADHD. These results brought valuable candidates for further research, but they also presented great challenge for profound understanding of genetic data and general patterns of current molecular genetic studies of ADHD since they are scattered and heterogeneous. In this review, we presented a retrospective review of more than 300 molecular genetic studies for ADHD from two aspects: (1) the main achievements of various studies were summarized, including linkage studies, candidate-gene association studies, genome-wide association studies and genome-wide copy number variation studies, with a special focus on general patterns of study design and common sample features; (2) candidate genes for ADHD have been systematically evaluated in three ways for better utilization. The thorough summary of the achievements from various studies will provide an overview of the research status of molecular genetics studies for ADHD. Meanwhile, the analysis of general patterns and sample characteristics on the basis of these studies, as well as the integrative review of candidate ADHD genes, will propose new clues and directions for future experiment design.


Nucleic Acids Research | 2014

rSNPBase: a database for curated regulatory SNPs

Guo Lp; Yang Du; Suhua Chang; Kunlin Zhang; Jing Wang

In recent years, human regulatory SNPs (rSNPs) have been widely studied. Here, we present database rSNPBase, freely available at http://rsnp.psych.ac.cn/, to provide curated rSNPs that analyses the regulatory features of all SNPs in the human genome with reference to experimentally supported regulatory elements. In contrast with previous SNP functional annotation databases, rSNPBase is characterized by several unique features. (i) To improve reliability, all SNPs in rSNPBase are annotated with reference to experimentally supported regulatory elements. (ii) rSNPBase focuses on rSNPs involved in a wide range of regulation types, including proximal and distal transcriptional regulation and post-transcriptional regulation, and identifies their potentially regulated genes. (iii) Linkage disequilibrium (LD) correlations between SNPs were analysed so that the regulatory feature is annotated to SNP-set rather than a single SNP. (iv) rSNPBase provides the spatio-temporal labels and experimental eQTL labels for SNPs. In summary, rSNPBase provides more reliable, comprehensive and user-friendly regulatory annotations on rSNPs and will assist researchers in selecting candidate SNPs for further genetic studies and in exploring causal SNPs for in-depth molecular mechanisms of complex phenotypes.


Nucleic Acids Research | 2011

ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework

Kunlin Zhang; Suhua Chang; Sijia Cui; Guo Lp; Liuyan Zhang; Jing Wang

Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.


Nucleic Acids Research | 2007

Influenza Virus Database (IVDB): an integrated information resource and analysis platform for influenza virus research

Suhua Chang; Jiajie Zhang; Xiaoyun Liao; Xinxing Zhu; Dahai Wang; Jiang Zhu; Tao Feng; Baoli Zhu; George F. Gao; Jian Wang; Huanming Yang; Jun Yu; Jing Wang

Frequent outbreaks of highly pathogenic avian influenza and the increasing data available for comparative analysis require a central database specialized in influenza viruses (IVs). We have established the Influenza Virus Database (IVDB) to integrate information and create an analysis platform for genetic, genomic, and phylogenetic studies of the virus. IVDB hosts complete genome sequences of influenza A virus generated by Beijing Institute of Genomics (BIG) and curates all other published IV sequences after expert annotation. Our Q-Filter system classifies and ranks all nucleotide sequences into seven categories according to sequence content and integrity. IVDB provides a series of tools and viewers for comparative analysis of the viral genomes, genes, genetic polymorphisms and phylogenetic relationships. A search system has been developed for users to retrieve a combination of different data types by setting search options. To facilitate analysis of global viral transmission and evolution, the IV Sequence Distribution Tool (IVDT) has been developed to display the worldwide geographic distribution of chosen viral genotypes and to couple genomic data with epidemiological data. The BLAST, multiple sequence alignment and phylogenetic analysis tools were integrated for online data analysis. Furthermore, IVDB offers instant access to pre-computed alignments and polymorphisms of IV genes and proteins, and presents the results as SNP distribution plots and minor allele distributions. IVDB is publicly available at


Nucleic Acids Research | 2012

ADHDgene: a genetic database for attention deficit hyperactivity disorder

Liuyan Zhang; Suhua Chang; Zhao E. Li; Kunlin Zhang; Yang Du; Jurg Ott; Jing Jing Wang

With a worldwide prevalence of ∼5%, attention deficit hyperactivity disorder (ADHD) has become one of the most common psychiatric disorders. The polygenetic nature of ADHD indicates that multiple genes jointly contribute to the development of this complex disease. Studies aiming to explore genetic susceptibility of ADHD have been increasing in recent years. There is a growing need to integrate the genetic data from various genetic studies to provide a comprehensive data set and uniform access for convenience of in-depth data mining. So far, there has been no such effort for ADHD. To address the genetic complexity of ADHD, we developed the ADHDgene database by integrating ADHD-related genetic factors by profound literature reading. Based on the data from the literature, extended functional analysis, including linkage disequilibrium analysis, pathway-based analysis and gene mapping were performed to provide new insights into genetic causes of ADHD. Moreover, powerful search tools and a graphical browser were developed to facilitate the navigation of the data and data connections. As the first genetic database for ADHD, ADHDgene aims to provide researchers with a central genetic resource and analysis platform for ADHD and is freely available at http://adhd.psych.ac.cn/.


BMC Systems Biology | 2011

Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction

Kechi Fang; Hansheng Zhao; Changyue Sun; Carolyn M.C. Lam; Suhua Chang; Kunlin Zhang; Gurudutta Panda; Miguel Godinho; Vitor A. P. Martins dos Santos; Jing Wang

BackgroundBurkholderia cenocepacia is a threatening nosocomial epidemic pathogen in patients with cystic fibrosis (CF) or a compromised immune system. Its high level of antibiotic resistance is an increasing concern in treatments against its infection. Strain B. cenocepacia J2315 is the most infectious isolate from CF patients. There is a strong demand to reconstruct a genome-scale metabolic network of B. cenocepacia J2315 to systematically analyze its metabolic capabilities and its virulence traits, and to search for potential clinical therapy targets.ResultsWe reconstructed the genome-scale metabolic network of B. cenocepacia J2315. An iterative reconstruction process led to the establishment of a robust model, i KF1028, which accounts for 1,028 genes, 859 internal reactions, and 834 metabolites. The model i KF1028 captures important metabolic capabilities of B. cenocepacia J2315 with a particular focus on the biosyntheses of key metabolic virulence factors to assist in understanding the mechanism of disease infection and identifying potential drug targets. The model was tested through BIOLOG assays. Based on the model, the genome annotation of B. cenocepacia J2315 was refined and 24 genes were properly re-annotated. Gene and enzyme essentiality were analyzed to provide further insights into the genome function and architecture. A total of 45 essential enzymes were identified as potential therapeutic targets.ConclusionsAs the first genome-scale metabolic network of B. cenocepacia J2315, i KF1028 allows a systematic study of the metabolic properties of B. cenocepacia and its key metabolic virulence factors affecting the CF community. The model can be used as a discovery tool to design novel drugs against diseases caused by this notorious pathogen.


Journal of Medical Genetics | 2015

Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder

Liang Zong; Jing Guan; Megan Ealy; Qiujing Zhang; Dayong Wang; Hongyang Wang; Yali Zhao; Zhirong Shen; Colleen A. Campbell; Fengchao Wang; Ju Yang; Wei Sun; Lan Lan; Dalian Ding; Linyi Xie; Yue Qi; Xin Lou; Xusheng Huang; Qiang Shi; Suhua Chang; Wenping Xiong; Zifang Yin; Ning Yu; Hui Zhao; Jun Wang; Jing Wang; Richard Salvi; Christine Petit; Richard J.H. Smith; Wang Q

Background Auditory neuropathy spectrum disorder (ANSD) is a form of hearing loss in which auditory signal transmission from the inner ear to the auditory nerve and brain stem is distorted, giving rise to speech perception difficulties beyond that expected for the observed degree of hearing loss. For many cases of ANSD, the underlying molecular pathology and the site of lesion remain unclear. The X-linked form of the condition, AUNX1, has been mapped to Xq23-q27.3, although the causative gene has yet to be identified. Methods We performed whole-exome sequencing on DNA samples from the AUNX1 family and another small phenotypically similar but unrelated ANSD family. Results We identified two missense mutations in AIFM1 in these families: c.1352G>A (p.R451Q) in the AUNX1 family and c.1030C>T (p.L344F) in the second ANSD family. Mutation screening in a large cohort of 3 additional unrelated families and 93 sporadic cases with ANSD identified 9 more missense mutations in AIFM1. Bioinformatics analysis and expression studies support this gene as being causative of ANSD. Conclusions Variants in AIFM1 gene are a common cause of familial and sporadic ANSD and provide insight into the expanded spectrum of AIFM1-associated diseases. The finding of cochlear nerve hypoplasia in some patients was AIFM1-related ANSD implies that MRI may be of value in localising the site of lesion and suggests that cochlea implantation in these patients may have limited success.

Collaboration


Dive into the Suhua Chang's collaboration.

Top Co-Authors

Avatar

Jing Wang

China-Japan Friendship Hospital

View shared research outputs
Top Co-Authors

Avatar

Kunlin Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liuyan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kechi Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weina Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huanming Yang

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Lei Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

George F. Gao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge