Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujatha Gomathinayagam is active.

Publication


Featured researches published by Sujatha Gomathinayagam.


Journal of Biotechnology | 2012

Optimization of erythropoietin production with controlled glycosylation-PEGylated erythropoietin produced in glycoengineered Pichia pastoris

Juergen H. Nett; Sujatha Gomathinayagam; Stephen R. Hamilton; Bing Gong; Robert C. Davidson; Min Du; Daniel Hopkins; Teresa Mitchell; Muralidhar R. Mallem; Adam Nylen; Seemab S. Shaikh; Nathan Sharkey; Gavin C. Barnard; Victoria Copeland; Liming Liu; Raymond Evers; Yan Li; Peter M. Gray; Russell B. Lingham; Denise M. Visco; Gail Forrest; Julie A. DeMartino; Thomas O. Linden; Thomas I. Potgieter; Stefan Wildt; Terrance A. Stadheim; Marc d’Anjou; Huijuan Li; Natarajan Sethuraman

Pichia pastoris is a methylotropic yeast that has gained great importance as an organism for protein expression in recent years. Here, we report the expression of recombinant human erythropoietin (rhEPO) in glycoengineered P. pastoris. We show that glycosylation fidelity is maintained in fermentation volumes spanning six orders of magnitude and that the protein can be purified to high homogeneity. In order to increase the half-life of rhEPO, the purified protein was coupled to polyethylene glycol (PEG) and then compared to the currently marketed erythropoiesis stimulating agent, Aranesp(®) (darbepoetin). In in vitro cell proliferation assays the PEGylated protein was slightly, and the non-PEGylated protein was significantly more active than comparator. Pharmacodynamics as well as pharmacokinetic activity of PEGylated rhEPO in animals was comparable to that of Aranesp(®). Taken together, our results show that glycoengineered P. pastoris is a suitable production host for rhEPO, yielding an active biologic that is comparable to those produced in current mammalian host systems.


Glycobiology | 2013

Production of sialylated O-linked glycans in Pichia pastoris

Stephen R. Hamilton; W. James Cook; Sujatha Gomathinayagam; Irina Burnina; John Bukowski; Daniel Hopkins; Shaina Schwartz; Min Du; Nathan J Sharkey; Piotr Bobrowicz; Stefan Wildt; Huijuan Li; Terrance A. Stadheim; Juergen H. Nett

The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. Previously, we have reported the glycoengineering of this organism to produce human-like N-linked glycans but up to now no one has addressed engineering the O-linked glycosylation pathway. Typically, O-linked glycans produced by wild-type P. pastoris are linear chains of four to five α-linked mannose residues, which may be capped with β- or phospho-mannose. Previous genetic engineering of the N-linked glycosylation pathway of P. pastoris has eliminated both of these two latter modifications, resulting in O-linked glycans which are linear α-linked mannose structures. Here, we describe a method for the co-expression of an α-1,2-mannosidase, which reduces these glycans to primarily a single O-linked mannose residue. In doing so, we have reduced the potential of these glycans to interact with carbohydrate-binding proteins, such as dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin. Furthermore, the introduction of the enzyme protein-O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, resulted in the capping of the single O-linked mannose residues with N-acetylglucosamine. Subsequently, this glycoform was extended into human-like sialylated glycans, similar in structure to α-dystroglycan-type glycoforms. As such, this represents the first example of sialylated O-linked glycans being produced in yeast and extends the utility of the P. pastoris production platform beyond N-linked glycosylated biotherapeutics to include molecules possessing O-linked glycans.


Pharmaceutical Research | 2013

The Impact of Glycosylation on the Pharmacokinetics of a TNFR2:Fc Fusion Protein Expressed in Glycoengineered Pichia Pastoris

Liming Liu; Sujatha Gomathinayagam; Lora Hamuro; Thomayant Prueksaritanont; Weirong Wang; Terrance A. Stadheim; Stephen R. Hamilton

ABSTRACTPurposeP. pastoris has previously been genetically engineered to generate strains that are capable of producing mammalian-like glycoforms. Our objective was to investigate the correlation between sialic acid content and pharmacokinetic properties of recombinant TNFR2:Fc fusion proteins generated in glycoengineered P. pastoris strains.MethodsTNFR2:Fc fusion proteins were generated with varying degrees of sialic acid content. The pharmacokinetic properties of these proteins were assessed by intravenous and subcutaneous routes of administration in rats. The binding of these variants to FcRn were also evaluated for possible correlations between in vitro binding and in vivo PK.ResultsThe pharmacokinetic profiles of recombinant TNFR2:Fc produced in P. pastoris demonstrated a direct positive correlation between the extent of glycoprotein sialylation and in vivo pharmacokinetic properties. Furthermore, recombinant TNFR2:Fc produced in glycoengineered Pichia, with a similar sialic acid content to CHO-produced etanercept, demonstrated similar in vivo pharmacokinetic properties to the commercial material. In vitro surface plasmon resonance FcRn binding at pH6.0 showed an inverse relationship between sialic acid content and receptor binding affinity, with the higher affinity binders having poorer in vivo PK profiles.ConclusionsSialic acid content is a critical attribute for modulating the pharmacokinetics of recombinant TNFR2:Fc produced in glycoengineered P. pastoris.


Glycobiology | 2011

Elimination of β-mannose glycan structures in Pichia pastoris

Daniel Hopkins; Sujatha Gomathinayagam; Alissa Rittenhour; Min Du; Erik Hoyt; Khanita Karaveg; Teresa Mitchell; Juergen H. Nett; Nathan J Sharkey; Terrance A. Stadheim; Huijuan Li; Stephen R. Hamilton

The methylotrophic yeast, Pichia pastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, such as those containing β-mannose (Man) linkages, can elicit an immune response or bind to Man receptors, thus reducing their efficacy. Recent studies have confirmed that P. pastoris has four genes from the β-mannosyl transferase (BMT) family and that Bmt2p is responsible for the majority of β-Man linkages on glycans. While expressing recombinant human erythropoietin (rhEPO) in a developmental glycoengineered strain devoid of BMT2 gene expression, cross-reactivity was observed with an antibody raised against host cell antigens. Treatment of the rhEPO with protein N-glycosidase F eliminated cross-reactivity, indicating that the antigen was associated with the glycan. Thorough analysis of the glycan profile of rhEPO demonstrated the presence of low amounts of α-1,2-mannosidase resistant high-Man glycoforms. In an attempt to eliminate the α-mannosidase resistant glycoforms, we used a systemic approach to genetically knock-out the remaining members of the BMT family culminating in a quadruple bmt2,4,1,3 knock-out strain. Data presented here conclude that the additive elimination of Bmt2p, Bmt3p and Bmt1p activities are required for total abolition of β-Man-associated glycans and their related antigenicity. Taken together, the elimination of β-Man containing glycoforms represents an important step forward for the Pichia production platform as a suitable system for the production of therapeutic glycoproteins.


Applied Microbiology and Biotechnology | 2014

In vitro enzymatic treatment to remove O-linked mannose from intact glycoproteins

Sujatha Gomathinayagam; Stephen R. Hamilton

The methylotrophic yeast Pichia pastoris is an attractive expression system for heterologous protein production due to its ability to perform posttranslational modifications, such as glycosylation, and secrete large amounts of recombinant protein. However, the structures of N- and O-linked oligosaccharide chains in yeast differ significantly from those of mammalian cells. The most common O-linked glycan structures added by P. pastoris are typically polymers of between one and four α-linked mannose residues, with a subset of glycans being capped by a β-1,2-mannose disaccharide or phosphomannose residue. Such mannosylation of recombinant proteins is considered a key factor in immunomodulation, with mannose-specific receptors binding and promoting enhanced immune responses. As a result of engineering the N-linked glycosylation pathway of P. pastoris, the recombinant proteins expressed in this system are devoid of phospho- and β-mannose on O-linked glycans, leaving only α-mannose polymers. Here we screen a library of α-mannosidases for their ability to decrease the extent of O-mannosylation on glycoproteins secreted from this expression system. In doing so, we demonstrate the utility of the α-1,2/3/6-mannosidase from Jack bean in not only reducing extended O-linked mannose chains but also in specifically hydrolyzing the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, this presents for the first time a strategy to remove O-linked glycosylation from intact glycoproteins expressed in P. pastoris. We additionally show that this strategy can be used to significantly decrease the extent of O-mannosylation on commercial products produced in other similar expression systems.


Glycobiology | 2011

Structural elucidation of an α-1,2-mannosidase resistant oligosaccharide produced in Pichia pastoris

Sujatha Gomathinayagam; Teresa Mitchell; Edward R Zartler; Christian Heiss; Parastoo Azadi; Dongxing Zha; Nga Rewa Houston-Cummings; Youwei Jiang; Fang Li; Erin Giaccone; Richard J Porambo; Carrie L. Anderson; Natarajan Sethuraman; Huijuan Li; Terrance A. Stadheim

The N-glycosylation pathway in Pichia pastoris has been humanized by the deletion of genes responsible for fungal-type glycosylation (high mannose) as well as the introduction of heterologous genes capable of forming human-like N-glycosylation. This results in a yeast host that is capable of expressing therapeutic glycoproteins. A thorough investigation was performed to examine whether glycoproteins expressed in glycoengineered P. pastoris strains may contain residual fungal-type high-mannose structures. In a pool of N-linked glycans enzymatically released by protein N-glycosidase from a reporter glycoprotein expressed in a developmental glycoengineered P. pastoris strain, an oligosaccharide with a mass consistent with a Hexose(9)GlcNAc(2) oligosaccharide was identified. When this structure was analyzed by a normal-phase high-performance liquid chromatography (HPLC), its retention time was identical to a Man(9)GlcNAc(2) standard. However, this Hexose(9)GlcNAc(2) oligosaccharide was found to be resistant to α-1,2-mannosidase as well as endomannosidase, which preferentially catabolizes endoplasmic reticulum oligosaccharides containing terminal α-linked glucose. To further characterize this oligosaccharide, we purified the Hexose(9)GlcNAc(2) oligosaccharide by HPLC and analyzed the structure by high-field one-dimensional (1D) and two-dimensional (2D) (1)H NMR (nuclear magnetic resonance) spectroscopy followed by structural elucidation by homonuclear and heteronuclear 1D and 2D (1)H and (13)C NMR spectroscopy. The results of these experiments lead to the identification of an oligosaccharide α-Man-(1 → 2)-β-Man-(1 → 2)-β-Man-(1 → 2)-α-Man-(1 → 2) moiety as part of a tri-antennary structure. The difference in enzymatic reactivity can be attributed to multiple β-linkages on the α-1,3 arm of the Man(9)GlcNAc(2) oligosaccharide.


Journal of Pharmaceutical Sciences | 2012

The Impact of Sialic Acids on the Pharmacokinetics of a PEGylated Erythropoietin

Liming Liu; Huijuan Li; Stephen R. Hamilton; Sujatha Gomathinayagam; William J. Rayfield; Marc van Maanen; Kuo‐Chang Yin; Laura Hong; Thomayant Prueksaritanont

Erythropoietin (EPO) is an important molecule in the erythropoiesis and various forms of EPO have been marketed in managing anemia in humans. Long acting EPOs for less frequent dosing have been generated either by increasing the number of glycosylation sites of the EPO molecule or by linking it to a polyethylene glycol (PEG). We have generated recombinant human EPO (rhEPO) using glycoengineered Pichia pastoris strains and evaluated the pharmacokinetics (PK) in rats of this molecule linked to a 40 kDa PEG (PEGylated rhEPO), in relation to its glycosylation patterns. As expected, the PEGylated rhEPO exhibited a significant improvement in half-life of serum when compared with the non-PEGylated version. Interestingly, the PK properties of the PEGylated rhEPO molecule were also significantly influenced by the glycosylation profile. Specifically, PEGylated rhEPO with a significantly higher sialic acid content in the biantennary structure (high A2) exhibited lower systemic clearance and higher systemic exposure than those with a lower sialic acid content (low A2) following either intravenous or subcutaneous administrations. These results suggest that A2 content may be one of the important criteria for release in manufacturing PEGylated rhEPO to ensure consistent PK.


Journal of Biotechnology | 2015

In vivo anti-tumor efficacy of afucosylated anti-CS1 monoclonal antibody produced in glycoengineered Pichia pastoris.

Sujatha Gomathinayagam; Drake LaFace; Nga Rewa Houston-Cummings; Ruban Mangadu; Renee Moore; Ishaan Shandil; Nathan Sharkey; Huijuan Li; Terrance A. Stadheim; Dongxing Zha

Monoclonal antibody (mAb) therapy has been successfully used for the treatment of B-cell lymphomas and is currently extended for the treatment of multiple myeloma (MM). New developments in MM therapeutics have achieved significant survival gains in patients but the disease still remains incurable. Elotuzumab (HuLuc63), an anti-CS1 monoclonal IgG1 antibody, is believed to induce anti-tumor activity and MM cytotoxicity through antibody dependent cellular cytotoxicity (ADCC) and inhibition of MM cell adhesion to bone marrow stromal cells (BMSCs). Modulations of the Fc glycan composition at the N297 site by selective mutations or afucosylation have been explored as strategies to develop bio-better therapeutics with enhanced ADCC activity. Afucosylated therapeutic antibodies with enhanced ADCC activity have been reported to possess greater efficacy in tumor growth inhibition at lower doses when compared to fucosylated therapeutic antibodies. The N-linked glycosylation pathway in Pichia pastoris has been engineered to produce human-like N-linked glycosylation with uniform afucosylated complex type glycans. The purpose of this study was to compare afucosylated anti-CS1 mAb expressed in glycoengineered Pichia pastoris with fucosylated anti-CS1 mAb expressed in mammalian HEK293 cells through in vitro ADCC and in vivo tumor inhibition models. Our results indicate that Fc glycosylation is critical for in vivo efficacy and afucosylated anti-CS1 mAb expressed in glycoengineered Pichia pastoris shows a better in vivo efficacy in tumor regression when compared to fucosylated anti-CS1 mAb expressed in HEK293 cells. Glycoengineered Pichia pastoris could provide an alternative platform for generating homogeneous afucosylated recombinant antibodies where Fc mediated immune effector function is important for efficacy.


Applied Microbiology and Biotechnology | 2015

A practical approach for O-linked mannose removal: the use of recombinant lysosomal mannosidase

Daniel Hopkins; Sujatha Gomathinayagam; Stephen R. Hamilton

The methylotrophic yeast Pichia pastoris is an attractive expression system due to its ability to secrete large amounts of recombinant protein, with the potential for glycosylation. Advances in glycoengineering of P. pastoris have successfully demonstrated the humanization of both the N- and O-linked glycosylation pathways in this organism. However, in certain cases, the presence of O-linked glycans on a therapeutic protein may not be desirable. Recently, we have reported the in vitro utility of jack bean α-1,2/3/6-mannosidase to remove O-linked mannose from intact undenatured glycoproteins produced in glycoengineered P. pastoris. However, one caveat of this strategy is that jack bean mannosidase has yet to be cloned and as such is only available as crude cellular extracts. This raises several concerns for using this reagent to treat large preparations of therapeutic proteins generated in P. pastoris. Therefore, we postulated that lysosomal mannosidases which have been cloned and demonstrated to have similar activities to jack bean mannosidase on N-linked glycans would also process O-linked glycans in a similar fashion. To this end, we screened a panel of recombinant lysosomal mannosidases from different organisms and identified several which cannot only reduce extended O-linked mannose chains but which can also hydrolyze the Man-α-O-Ser/Thr glycosidic bond on intact glycoproteins. As such, not only do we show for the first time the utility of lysosomal mannosidase for O-linked mannose processing, but since this is a recombinant enzyme, it has several benefits over the use of crude jack bean mannosidase extracts.


Applied Microbiology and Biotechnology | 2014

Elimination of diaminopeptidase activity in Pichia pastoris for therapeutic protein production.

Daniel Hopkins; Sujatha Gomathinayagam; Heather Lynaugh; Terrance A. Stadheim; Stephen R. Hamilton

Yeast are important production platforms for the generation of recombinant proteins. Nonetheless, their use has been restricted in the production of therapeutic proteins due to differences in their glycosylation profile with that of higher eukaryotes. The yeast strain Pichia pastoris is an industrially important organism. Recent advances in the glycoengineering of this strain offer the potential to produce therapeutic glycoproteins with sialylated human-like N- and O-linked glycans. However, like higher eukaryotes, yeast also express numerous proteases, many of which are either localized to the secretory pathway or pass through it en route to their final destination. As a consequence, nondesirable proteolysis of some recombinant proteins may occur, with the specific cleavage being dependent on the class of protease involved. Dipeptidyl aminopeptidases (DPP) are a class of proteolytic enzymes which remove a two-amino acid peptide from the N-terminus of a protein. In P. pastoris, two such enzymes have been identified, Ste13p and Dap2p. In the current report, we demonstrate that while the knockout of STE13 alone may protect certain proteins from N-terminal clipping, other proteins may require the double knockout of both STE13 and DAP2. As such, this understanding of DPP activity enhances the utility of the P. pastoris expression system, thus facilitating the production of recombinant therapeutic proteins with their intact native sequences.

Collaboration


Dive into the Sujatha Gomathinayagam's collaboration.

Researchain Logo
Decentralizing Knowledge