Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujuan Yu is active.

Publication


Featured researches published by Sujuan Yu.


Environmental Science: Processes & Impacts | 2013

Silver nanoparticles in the environment

Sujuan Yu; Yongguang Yin; Jingfu Liu

Silver nanoparticles (AgNPs) are well known for their excellent antibacterial ability and superior physical properties, and are widely used in a growing number of applications ranging from home disinfectants and medical devices to water purificants. However, with the accelerating production and introduction of AgNPs into commercial products, there is likelihood of release into the environment, which raises health and environmental concerns. This article provides a critical review of the state-of-knowledge about AgNPs, involving the history, analysis, source, fate and transport, and potential risks of AgNPs. Although great efforts have been made in each of these aspects, there are still many questions to be answered to reach a comprehensive understanding of the positive and negative effects of AgNPs. In order to fully investigate the fate and transport of AgNPs in the environment, appropriate methods for the preconcentration, separation and speciation of AgNPs should be developed, and analytical tools for the characterization and detection of AgNPs in complicated environmental samples are also urgently needed. To elucidate the environmental transformation of AgNPs, the behavior of AgNPs should be thoroughly monitored in complex environmental relevant conditions. Furthermore, additional in vivo toxicity studies should be carried out to understand the exact toxicity mechanism of AgNPs, and to predict the health effects to humans.


Analytical Chemistry | 2011

Speciation Analysis of Silver Nanoparticles and Silver Ions in Antibacterial Products and Environmental Waters via Cloud Point Extraction-Based Separation

Jing-bo Chao; Jingfu Liu; Sujuan Yu; Ying-Di Feng; Zc Tan; Rui Liu; Yong-guang Yin

The rapid growth in commercial use of silver nanoparticles (AgNPs) will inevitably increase silver exposure in the environment and the general population. As the fate and toxic effects of AgNPs is related to the Ag(+) released from AgNPs and the transformation of Ag(+) into AgNPs, it is of great importance to develop methods for speciation analysis of AgNPs and Ag(+). This study reports the use of Triton X-114-based cloud point extraction as an efficient separation approach for the speciation analysis of AgNPs and Ag(+) in antibacterial products and environmental waters. AgNPs were quantified by determining the Ag content in the Triton X-114-rich phase with inductively coupled plasma mass spectrometry (ICPMS) after microwave digestion. The concentration of total Ag(+), which consists of the AgNP adsorbed, the matrix associated, and the freely dissolved, was obtained by subtracting the AgNP content from the total silver content that was determined by ICPMS after digestion. The limits of quantification (S/N = 10) for antibacterial products were 0.4 μg/kg and 0.2 μg/kg for AgNPs and total silver, respectively. The reliable quantification limit was 3 μg/kg for total Ag(+). The presence of Ag(+) at concentrations up to 2-fold that of AgNPs caused no effects on the determination of AgNPs. In the cloud point extraction of AgNPs in antibacterial products, the spiked recoveries of AgNPs were in the range of 71.7-103% while the extraction efficiencies of Ag(+) were in the range of 1.2-10%. The possible coextracted other silver containing nanoparticles in the cloud point extraction of AgNPs were distinguished by transmission electron microscopy (TEM), scanning electron microscopy (SEM)- energy dispersive spectroscopy (EDS), and UV-vis spectrum. Real sample analysis indicated that even though the manufacturers claimed nanosilver products, AgNPs were detected only in three of the six tested antibacterial products.


Environmental Science & Technology | 2014

Highly Dynamic PVP-Coated Silver Nanoparticles in Aquatic Environments: Chemical and Morphology Change Induced by Oxidation of Ag0 and Reduction of Ag+

Sujuan Yu; Yongguang Yin; Jing-bo Chao; Mohai Shen; Jingfu Liu

The fast growing and abundant use of silver nanoparticles (AgNPs) in commercial products alerts us to be cautious of their unknown health and environmental risks. Because of the inherent redox instability of silver, AgNPs are highly dynamic in the aquatic system, and the cycle of chemical oxidation of AgNPs to release Ag(+) and reconstitution to form AgNPs is expected to occur in aquatic environments. This study investigated how inevitable environmentally relevant factors like sunlight, dissolved organic matter (DOM), pH, Ca(2+)/Mg(2+), Cl(-), and S(2-) individually or in combination affect the chemical transformation of AgNPs. It was demonstrated that simulated sunlight induced the aggregation of AgNPs, causing particle fusion or self-assembly to form larger structures and aggregates. Meanwhile, AgNPs were significantly stabilized by DOM, indicating that AgNPs may exist as single particles and be suspended in natural water for a long time or delivered far distances. Dissolution (ion release) kinetics of AgNPs in sunlit DOM-rich water showed that dissolved Ag concentration increased gradually first and then suddenly decreased with external light irradiation, along with the regeneration of new tiny AgNPs. pH variation and addition of Ca(2+) and Mg(2+) within environmental levels did not affect the tendency, showing that this phenomenon was general in real aquatic systems. Given that a great number of studies have proven the toxicity of dissolved Ag (commonly regarded as the source of AgNP toxicity) to many aquatic organisms, our finding that the effect of DOM and sunlight on AgNP dissolution can regulate AgNP toxicity under these conditions is important. The fact that the release of Ag(+) and regeneration of AgNPs could both happen in sunlit DOM-rich water implies that previous results of toxicity studies gained by focusing on the original nature of AgNPs should be reconsidered and highlights the necessity to monitor the fate and toxicity of AgNPs under more environmentally relevant conditions.


Environmental Science & Technology | 2013

Quantification of the uptake of silver nanoparticles and ions to HepG2 cells.

Sujuan Yu; Jing-bo Chao; Jia Sun; Yongguang Yin; Jingfu Liu; Guibin Jiang

The toxic mechanism of silver nanoparticles (AgNPs) is still debating, partially because of the common co-occurrence and the lack of methods for separation of AgNPs and Ag(+) in biological matrices. For the first time, Triton-X 114-based cloud point extraction (CPE) was proposed to separate AgNPs and Ag(+) in the cell lysates of exposed HepG2 cells. Cell lysates were subjected to CPE after adding Na2S2O3, which facilitated the transfer of AgNPs into the nether Triton X-114-rich phase by salt effect and the preserve of Ag(+) in the upper aqueous phase through the formation of hydrophilic complex. Then the AgNP and Ag(+) contents in the exposed cells were determined by ICP-MS after microwave digestion of the two phases, respectively. Under the optimized conditions, over 67% of AgNPs in cell lysates were extracted into the Triton X-114-rich phase while 94% of Ag(+) remained in the aqueous phase, and the limits of detection for AgNPs and Ag(+) were 2.94 μg/L and 2.40 μg/L, respectively. This developed analytical method was applied to quantify the uptake of AgNPs to the HepG2 cells. After exposure to 10 mg/L AgNPs for 24 h, about 67.8 ng Ag were assimilated per 10(4) cells, in which about 10.3% silver existed as Ag(+). Compared to the pristine AgNPs (with 5.2% Ag(+)) for exposure, the higher ratio of Ag(+) to AgNPs in the exposed cells (10.3% Ag(+)) suggests the transformation of AgNPs into Ag(+) in the cells and/or the higher uptake rate of Ag(+) than that of AgNPs. Given that the toxicity of Ag(+) is much higher than that of AgNPs, the substantial content of Ag(+) in the exposed cells suggests that the contribution of Ag(+) should be taken into account in evaluating the toxicity of AgNPs to organisms, and previous results obtained by regarding the total Ag content in organisms as AgNPs should be reconsidered.


Environmental Science & Technology | 2015

Particle Coating-Dependent Interaction of Molecular Weight Fractionated Natural Organic Matter: Impacts on the Aggregation of Silver Nanoparticles

Yongguang Yin; Mohai Shen; Zc Tan; Sujuan Yu; Jingfu Liu; Guibin Jiang

Ubiquitous natural organic matter (NOM) plays an important role in the aggregation state of engineered silver nanoparticles (AgNPs) in aquatic environment, which determines the transport, transformation, and toxicity of AgNPs. As various capping agents are used as coatings for nanoparticles and NOM are natural polymer mixture with wide molecular weight (MW) distribution, probing the particle coating-dependent interaction of MW fractionated natural organic matter (Mf-NOM) with various coatings is helpful for understanding the differential aggregation and transport behavior of engineered AgNPs as well as other metal nanoparticles. In this study, we investigated the role of pristine and Mf-NOM on the aggregation of AgNPs with Bare, citrate, and PVP coating (Bare-, Cit-, and PVP-AgNP) in mono- and divalent electrolyte solutions. We observed that the enhanced aggregation or dispersion of AgNPs in NOM solution highly depends on the coating of AgNPs. Pristine NOM inhibited the aggregation of Bare-AgNPs but enhanced the aggregation of PVP-AgNPs. In addition, Mf-NOM fractions have distinguishing roles on the aggregation and dispersion of AgNPs, which also highly depend on the AgNPs coating as well as the MW of Mf-NOM. Higher MW Mf-NOM (>100 kDa and 30-100 kDa) enhanced the aggregation of PVP-AgNPs in mono- and divalent electrolyte solutions, whereas lower MW Mf-NOM (10-30 kDa, 3-10 kDa and <3 kDa) inhibited the aggregation of PVP-AgNPs. However, all the Mf-NOM fractions inhibited the aggregation of Bare-AgNPs. For PVP- and Bare-AgNPs, the stability of AgNPs in electrolyte solution was significantly correlated to the MW of Mf-NOM. But for Cit-AgNPs, pristine NOM and Mf-NOM has minor influence on the stability of AgNPs. These findings about significantly different roles of Mf-NOM on aggregation of engineered AgNPs with various coating are important for better understanding of the transport and subsequent transformation of AgNPs in aquatic environment.


Journal of Environmental Sciences-china | 2015

Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters

Yongguang Yin; Xiaoya Yang; Xiaoxia Zhou; Weidong Wang; Sujuan Yu; Jingfu Liu; Guibin Jiang

The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments.


Environmental Science & Technology | 2014

Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.

Yongguang Yin; Sujuan Yu; Jingfu Liu; Guibin Jiang

Naturally occurring Au nanoparticles (AuNPs) have been widely observed in ore deposits, coal, soil, and environmental water. Identifying the source of these naturally occurring AuNPs could be helpful for not only the discovery of Au deposits through advanced exploration methods, but also the elucidation of the biogeochemical cycle and environmental toxicity of ionic Au and engineered AuNPs. Here, we investigated the effect of natural/simulated sunlight and heating on the reduction of ionic Au by ubiquitous dissolved organic matter (DOM) in river water. The reductive process probed by X-ray photoelectron spectroscopy revealed that phenolic, alcoholic, and aldehyde groups in DOM act as reductive sites. Long-time exposure with thermal and photoirradiation induced the further fusion and growth of AuNPs to branched Au nanostructure as precipitation. The formation processes and kinetics of AuNPs were further investigated using humic acid (HA) as the DOM model, with comprehensive characterizing methods. We have observed that HA can reduce ionic Au(III) complex (as chloride or hydroxyl complex) to elemental Au nanoparticles under sunlight or heating. In this process, nearly all of the Au(III) could be reduced to AuNPs, in which HA serves as not only the reductive agent, but also the coating agent to stabilize and disperse AuNPs. The size and stability of AuNPs were highly dependent on the concentration ratio of Au(III) to HA. These results imply that, besides biological processes, this thermal or photochemical reduction process is another possible source of naturally occurring AuNPs in natural environments, which possibly has critical impacts on the transport and transformation of Au and engineered AuNPs.


Chemical Reviews | 2017

Isotope Tracers To Study the Environmental Fate and Bioaccumulation of Metal-Containing Engineered Nanoparticles: Techniques and Applications

Yongguang Yin; Zc Tan; Ligang Hu; Sujuan Yu; Jingfu Liu; Guibin Jiang

The rapidly growing applicability of metal-containing engineered nanoparticles (MENPs) has made their environmental fate, biouptake, and transformation important research topics. However, considering the relatively low concentration of MENPs and the high concentration of background metals in the environment and in organisms, tracking the fate of MENPs in environment-related scenarios remains a challenge. Intrinsic labeling of MENPs with radioactive or stable isotopes is a useful tool for the highly sensitive and selective detection of MENPs in the environment and organisms, thus enabling tracing of their transformation, uptake, distribution, and clearance. In this review, we focus on radioactive/stable isotope labeling of MENPs for their environmental and biological tracing. We summarize the advantages of intrinsic radioactive/stable isotopes for MENP labeling and discuss the considerations in labeling isotope selection and preparation of labeled MENPs, as well as exposure routes and detection of labeled MENPs. In addition, current practice in the use of radioactive/stable isotope labeling of MENPs to study their environmental fate and bioaccumulation is reviewed. Future perspectives and potential applications are also discussed, including imaging techniques for radioactive- and stable-isotope-labeled MENPs, hyphenated multistable isotope tracers with speciation analysis, and isotope fractionation as a MENP tracer. It is expected that this critical review could provide the necessary background information to further advance the applications of isotope tracers to study the environmental fate and bioaccumulation of MENPs.


Environmental science. Nano | 2016

Transformation kinetics of silver nanoparticles and silver ions in aquatic environments revealed by double stable isotope labeling

Sujuan Yu; Yongguang Yin; Xiaoxia Zhou; Lijie Dong; Jingfu Liu

Silver nanoparticles (AgNPs) are rather mutable in water columns, and the oxidation of AgNPs to release Ag+ and reduction of Ag+ to regenerate AgNPs exist simultaneously in certain environments, making it rather difficult to monitor the reaction kinetics. In this study, we synthesized isotopically labeled AgNPs (99.5% 107Ag, 107AgNPs) and AgNO3 (99.81% 109Ag, 109AgNO3). For the first time, two stable Ag isotopes were used in the same experiment to track the transformation kinetics of AgNPs and Ag+ independently in aquatic environments. It was found that the oxidation of AgNPs dominated the reaction in simple water solutions containing both 107AgNPs and 109Ag+. Sunlight significantly accelerated the dissolution of the 107AgNPs, but longer solar irradiation (8 h) triggered aggregation of the 107AgNPs and therefore reduced the reaction rate. With the addition of 5 mg C L−1 dissolved organic matter, the reduction of 109Ag+ played the leading role. The corrected concentration of dissolved 107Ag+ began to decrease after some time, indicating other reduction mechanisms were happening. An elevated pH (pH 8.5) could even completely inhibit the oxidation of 107AgNPs. All the reactions seemed stalled at low temperature (6 °C) except the dissolution of 107AgNPs under solar irradiation, suggesting a non-negligible effect of sunlight. The presence of divalent cations induced agglomeration of 107AgNPs, but the reduction of 109Ag+ was not significantly affected. These findings implied that the transformation between AgNPs and Ag+ was rather complex and greatly depended on the external conditions. Given the fact that Ag+ has been shown to be much more toxic than AgNPs, the speciation change may dramatically impact the final toxicity and bioavailability of AgNPs, so there is a high demand for assessing the environmental risks of AgNPs under more realistic conditions.


Environmental Pollution | 2017

Photo- and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication.

Yongguang Yin; Wei Xu; Zc Tan; Yanbin Li; Weidong Wang; Xiaoru Guo; Sujuan Yu; Jingfu Liu; Guibin Jiang

AgCl and Ag2S prevalently exist in the environment as minerals and/or the chlorination and sulfidation products of ionic silver and elemental silver nanoparticles (AgNPs). In this work, we investigated the chemical transformation of AgCl and Ag2S under simulated sunlight (in water) and incineration (in sludge and simulated municipal solid waste, SMSW). In the presence of natural organic matter, AgCl in river water was observed to be transformed into AgNPs under simulated sunlight, while photo-reduction of Ag2S could not take place under the same experimental conditions. During the course of incineration, pure Ag2S was transformed into elemental silver while AgCl remained stable; however, both Ag2S in sludge and AgCl in SMSW can be transformed to elemental silver under incineration, evident by the results of X-ray absorption spectroscopy and scanning electron microscopy measurements. Incineration temperature played an important role in the transformation of Ag2S and AgCl into elemental silver. These results suggest that chemical transformations of Ag2S and AgCl into elemental silver could be a possible source of naturally occurring or unintentionally produced AgNPs, affecting the fate, transport, bioavailability and toxicity of silver. Therefore, it is necessary to include the contributions of this transformation process when assessing the risk of ionic silver/AgNPs and the utilization and management of incineration residues.

Collaboration


Dive into the Sujuan Yu's collaboration.

Top Co-Authors

Avatar

Jingfu Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yongguang Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guibin Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mohai Shen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoxia Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zc Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rui Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Weidong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoya Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chao Tai

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge