Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suk Hyun Jung is active.

Publication


Featured researches published by Suk Hyun Jung.


European Journal of Pharmaceutical Sciences | 2009

Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics.

Suk Hyun Jung; Deok Hwi Lim; Soon Hwa Jung; Jungeun Lee; Kyu-Sung Jeong; Hasoo Seong; Byung Cheol Shin

Lipid nanoparticles (LNPs) as nano-scale drug carriers that can entrap poorly water-soluble drugs such as amphotericin B (AmB) in aqueous solution with high drug entrapment efficiency were developed and their in vitro and in vivo characteristics were investigated. The AmB-entrapping plain, anionic and PEG (polyethylene glycol)-LNPs were prepared by using spontaneous emulsification and solvent evaporation (SESE) method. Mean particle size of the AmB-entrapping LNPs ranged from 72.9 to 159.1nm according to a variation of their lipid composition. The surface of AmB-entrapping PEG (0.2)-LNPs having 84.4+/-6nm of particle size was negatively charged showing -50.4+/-5mV of zeta-potential value. Entrapment efficiency of AmB in the PEG-LNPs reached up to 76.5+/-5%. Cytotoxicity of the AmB-entrapping LNPs against human kidney cells, 293 cells, was lower than those of the commercialized AmB-formulations such as Fungizone and AmBisome. Hematotoxicity of the AmB-entrapping LNPs against red blood cells was much lower than that of Fungizone but comparable to AmBisome. Antifungal activity in vitro of AmB-entrapping LNPs against Candida albicans and Aspergillus fumigatus was better than the commercialized AmB formulations showing their low minimum inhibitory concentration (MIC) for 90% of growth inhibition of fungi. The AmB-entrapping LNPs increased circulation half life of AmB in blood stream and it was comparable to AmBisome. Antifungal activity in vivo of the AmB-entrapping PEG-LNPs against Aspergillus fumigatus (ATCC 16424)-infected mice was superior to that of AmBisome. The drug-entrapping LNPs, especially PEG-LNPs, can be applicable to entrapment of poorly water-soluble drugs and enhancement of therapeutic efficacy by modulating pharmacokinetic behaviors and/or drug-related toxicities.


International Journal of Pharmaceutics | 2009

Polyethylene glycol-complexed cationic liposome for enhanced cellular uptake and anticancer activity.

Suk Hyun Jung; Soon Hwa Jung; Hasoo Seong; Sun Hang Cho; Kyu-Sung Jeong; Byung Cheol Shin

Liposomes as one of the efficient drug carriers have some shortcomings such as their relatively short blood circulation time, fast clearance from human body by reticuloendothelial system (RES) and limited intracellular uptake to target cells. In this study, polyethylene glycol (PEG)-complexed cationic liposomes (PCL) were prepared by ionic complex of cationically charged liposomes with carboxylated polyethylene glycol (mPEG-COOH). The cationic liposomes had approximately 98.6+/-1.0 nm of mean particle diameter and 45.5+/-1.1 mV of zeta potential value. While, the PCL had 110.1+/-1.2 nm of mean particle diameter and 18.4+/-0.8 mV of zeta potential value as a result of the ionic complex of mPEG-COOH with cationic liposomes. Loading efficiency of model drug, doxorubicin, into cationic liposomes or PCL was about 96.0+/-0.7%. Results of intracellular uptake evaluated by flow cytometry and fluorescence microscopy studies showed higher intracellular uptake of PCL than that of Doxil. In addition, in vitro cytotoxicity of PCL was comparable to cationic liposomes. In pharmacokinetic study in rats, PCL showed slightly lower plasma level of DOX than that of Doxil. In vivo antitumor activity of DOX-loaded PCL was comparable to that of Doxil against human SKOV-3 ovarian adenocarcinoma xenograft rat model. Consequently, the PCL, of which surface was complexed with PEG by ionic complex may be applicable as drug delivery carriers for increasing therapeutic efficacy of anticancer drugs.


Colloids and Surfaces B: Biointerfaces | 2010

Increased stability in plasma and enhanced cellular uptake of thermally denatured albumin-coated liposomes

Suk Hyun Jung; Sung Kyu Kim; Soon Hwa Jung; Eun Hye Kim; Sun Hang Cho; Kyu-Sung Jeong; Hasoo Seong; Byung Cheol Shin

Liposomes are nano-scale vesicles that can be used as one of drug carriers. The liposomes are, however, plagued by rapid opsonization of them and hence making their circulation time in bloodstream to be shortened. In this study, cationically charged liposomes of which surface was modified with bovine serum albumin (BSA) were prepared by using electrostatic interaction between cationic liposomes and anionically charged BSA molecules at higher pH than isoelectric point (pI) of BSA. The BSA-coated liposomes (BLs) were denatured by thermal treatment of BL at 100 degrees C. The thermally denatured BSA-coated liposomes (DBLs) have mean particle diameter of 109+/-1 nm. Encapsulation of model drug, doxorubicin (DOX), in the liposomes was carried out by using, so called, remote loading method and loading efficiency of DOX in liposomes was about 90%. DBL800 showed higher stability in plasma compared to Doxil. Results of intracellular uptake evaluated by flow cytometry and confocal microscopy studies showed higher intracellular uptake of DBL800 than that of Doxil. Consequently, the DBL, of which surface was complexed with denatured protein may be applicable as drug delivery carriers for increasing stability in plasma and enhanced cellular uptake efficacy of anticancer drugs.


International Journal of Pharmaceutics | 2009

Disaccharide-modified liposomes and their in vitro intracellular uptake

Chung Kil Song; Suk Hyun Jung; Dae Duk Kim; Kyu-Sung Jeong; Byung Cheol Shin; Hasoo Seong

Sterically stabilized liposomes (SSL) were known to be accumulated passively in cancer due to the effect of enhanced permeability and retention (EPR). However, drug delivery via SSL to cancer seemed to show an insufficient improvement of chemotherapeutic efficacy. Herein, carbohydrate-binding proteins (lectins) of cell surface, which express on the plasmic membrane of many malignant cells, can be a good model of surface-modified liposomes. In this study, we investigated the in vitro characteristics of liposomes of which the surface was modified with a disaccharide molecule, sucrose or maltose. The disaccharide-modified lipids such as sucrose-modified lipid and maltose-modified lipid, in which the disaccharide was conjugated to the one end of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(polyethylene glycol)-2000 (DSPE-PEG2000), was synthesized. The disaccharide-modified liposomes were prepared by thin film-hydration method and then doxorubicin (DOX), an anticancer drug, was loaded to the prepared liposomes by the remote loading method with ammonium ion gradient. Flow cytometry and confocal microscopy analyses showed that the disaccharide-modified liposomes enhanced the intracellular uptake of liposomes into various cancer cell lines via lectin-mediated endocytosis. The disaccharide-modified liposomes in which DOX was loaded inside of liposomes exhibited higher cytotoxicity against various cancer cells than DOX-loaded SSL did. These results suggest that disaccharide-modified liposomes may be promising cancer targeting carriers which can enhance intracellular uptake and cytotoxicity of the drug-loaded liposomes via lectin-mediated endocytosis.


Colloids and Surfaces B: Biointerfaces | 2012

Elastin-like polypeptide modified liposomes for enhancing cellular uptake into tumor cells

Kyunga Na; Seul A Lee; Suk Hyun Jung; Jinho Hyun; Byung Cheol Shin

Polyethylene glycol-modified (PEGylated) liposomes have been widely used because of their long circulation time, but they have a major drawback of limited cellular uptake. In this study, liposomes modified with a thermosensitive biopolymer, elastin-like polypeptide (ELP), were prepared to enhance cellular uptake in tumor cells. Synthesized ELP exhibited an inverse transition temperature (T(t)) of 40°C in serum with hyperthermia treatment and contained a lysine residue for conjugation with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[poly(ethylene-glycol)]-hydroxy succinamide, PEG MW 2000 (DSPE-PEG2000-NHS). ELP was covalently conjugated with liposomes encapsulating a high concentration of doxorubicin (Dox). Size and drug release properties of liposomes were investigated over a range of temperatures. ELP-modified liposomes tended to aggregate but did not show temperature-triggered release by phase transition of ELP molecules. Cellular uptake efficiency of liposomes was evaluated under normothermic and hyperthermic condition. Dox accumulation from liposomes was determined by flow cytometry and confocal microscopy. Higher internalization occurred in the ELP-modified liposomes than in ELP-unmodified liposomes. The results suggest that dehydration of ELP molecules on the liposomal surface can induce efficient cellular uptake, which can improve existing chemotherapeutic efficacy.


Colloids and Surfaces B: Biointerfaces | 2011

Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics.

Kyunga Na; Seul A Lee; Suk Hyun Jung; Byung Cheol Shin

Gadolinium (Gd)-based cancer therapeutic liposomes can be used for chemotherapeutics and diagnostics. In this study, dual functional liposomes co-encapsulating doxorubicin (Dox) and Gd were prepared by Dox-transition metal complexation. Preparation conditions were optimized to obtain liposomes containing high concentrations of Dox and Gd. The optimized liposomes Gd250 co-encapsulated 3.6 mM of Dox and 1.9 mM of Gd. The magnetic resonance (MR) properties of Gd250 liposomes were determined using a 4.7 T MR system. Cellular uptake of Dox was determined using a flow cytometer and a confocal microscopy and that of Gd was measured using an inductively coupled plasma-atomic emission spectrometer. Although encapsulated Gd exhibited lower relaxivity than MRbester®, which is widely used for clinical diagnosis, because of limited diffusion across the liposome membrane, Gd250 liposomes showed much higher cellular uptake than that of MRbester®. In Gd250 liposomes, Gd was highly accumulated in B16F10 cells, which could provide improved contrast sensitivity for molecular imaging. Additionally, in Gd250 liposomes, Dox was highly internalized, which could enhance its cancer therapeutic effects. Consequently, we suggest that dual functional liposomes can be used as therapeutic and diagnostic carriers.


Nanoscale Research Letters | 2012

Gd(III)-DOTA-modified sonosensitive liposomes for ultrasound-triggered release and MR imaging

Suk Hyun Jung; Kyunga Na; Seul A Lee; Sun Hang Cho; Hasoo Seong; Byung Cheol Shin

Ultrasound-sensitive (sonosensitive) liposomes for tumor targeting have been studied in order to increase the antitumor efficacy of drugs and decrease the associated severe side effects. Liposomal contrast agents having Gd(III) are known as a nano-contrast agent system for the efficient and selective delivery of contrast agents into pathological sites. The objective of this study was to prepare Gd(III)-DOTA-modified sonosensitive liposomes (GdSL), which could deliver a model drug, doxorubicin (DOX), to a specific site and, at the same time, be capable of magnetic resonance (MR) imaging. The GdSL was prepared using synthesized Gd(III)-DOTA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine lipid. Sonosensitivity of GdSL to 20-kHz ultrasound induced 33% to 40% of DOX release. The relaxivities (r1) of GdSL were 6.6 to 7.8 mM−1 s−1, which were higher than that of MR-bester®. Intracellular uptake properties of GdSL were evaluated according to the intensity of ultrasound. Intracellular uptake of DOX for ultrasound-triggered GdSL was higher than that for non-ultrasound-triggered GdSL. The results of our study suggest that the paramagnetic and sonosensitive liposomes, GdSL, may provide a versatile platform for molecular imaging and targeted drug delivery.


Journal of Pharmaceutical Investigation | 2010

Enhanced Iontophoretic Delivery of Risedronate Sodium Across Hairless Mice Skin

In Young Hwang; Mi Jung Lee; Suk Hyun Jung; Seo Young Jeong; Sun Hang Cho; Young Sig Gil; Sang Young Jeong; Byung Cheol Shin

Osteoporosis was traditionally defined by the occurrence of nontraumatic fractures, especially of the spine, in the setting of low bone mass. Bisphosphonates are an important group of therapeutic agents for the management of osteoporosis, as they inhibit bone resorption and increase bone density, thereby potentially decreasing fracture risk. Risedronate sodium is a bisphosphonate class used by oral formulation. In this study, risedronate was transdermally delivered by iontophoresis. Effects of polarity, pH, current density, and drug concentration were studied using a side-by-side diffusion cell including the hairless mice skin. In addition we studied effect of enhancers. The flux was evaluated by HPLC/UV system. The amount of transported drug under iontophoretic delivery was approximately 186 fold higher than that under passive delivery. Flux was proportional to the increase of drug concentration and current density. The flux was observed about 0.68mg/ when the amout of Propyleneglycol monolaurate (PGML) used 1% as enhancer. Results indicated that iontophoresis is an effective method for transdermal administration of risedronate sodium


Journal of Korean Pharmaceutical Sciences | 2009

Preparation and Characterization of Cy5.5-conjugated Biocompatible Polymeric Micellar Nanoparticles for Optical Imaging

Hyo-Jeong Kim; Byung-Jin Kim; Ha-Yeong Lee; Suk Hyun Jung; Seo-Young Jeong; Soon-Hong Yuk; Byung-Cheo Shin; Hasoo Seong; Youn-Woong Choi; Dae-Chul Ha; Sun-Hang Choi; Soo-Min Lee

PHEA (hydroxyethyl-aspartamide)-mPEG (methoy-polyethyleneglycol)- (hexadecylamine)-ED (ethylenediamine) was prepared as a drug delivery carrier. The structure and molecular weight of polymers were characterized by -NMR and gel permeation chromatography. Micelle size and shape were measured by electro-photometer light scattering and transmission electron microscope. The mean diameter of micelles was 23 nm in aqueous solution. To evaluate the potential of these polymeric micelles as a drug carrier, PSI-mPEG--ED was conjugated with Cy5.5 for Near-Infrared Fluorescent (NIRF) based optical imaging. PSI-mPEG--ED-Cy5.5 was injected intravenously into mice (n=5) and in vivo NIRF imaging was performed during 48 h after injection. The biodistribution study at 24 h after injection showed the longcirculation property of PSI-mPEG--ED-Cy5.5. Therefore, PSI-mPEG--ED micelles could be a promising drug carrier and imaging agent.


Journal of Korean Pharmaceutical Sciences | 2009

Stability in Plasma and Intracellular Uptake of Thermally Denatured Protein-coated anionic Liposomes

Mi Jung Lee; In Young Hwang; Sung Kyu Kim; Suk Hyun Jung; Seo Young Jeong; Ha soo Seong; Sun Hang Cho; Byung Cheol Shin

Liposomes have been used as one of the efficient carriers for drug delivery. In this study, anionic liposomes of which surface was modified by using both electrostaic interaction between anionic liposomes and cationically charged BSA molecules at lower pH than isoelectric point (pI) of BSA and denaturation of the BSA-coated liposomes by thermal treatment. The thermally denatured BSA-coated liposomes (DBAL) had mean particle diameter of 125.21.7 nm and zeta potential value of -22.44.5 mV. Loading efficiency of model drug, doxorubicin (DOX), into liposomes was 83.02.6%. Results of in vitro stability study of DBAL in blood plasma showed that the mean particle diameter of DBAL 400 did not increase in blood plasma and adsorption of plasma protein was much less than plain or anionic liposomes. Intracellular uptake of DBAL 400 evaluated by confocal microscopy observation was higher than that of PEG liposomes.

Collaboration


Dive into the Suk Hyun Jung's collaboration.

Top Co-Authors

Avatar

Byung Cheol Shin

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyunga Na

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chung Kil Song

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Dae Duk Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge