Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sukriti Goyal is active.

Publication


Featured researches published by Sukriti Goyal.


Gene | 2016

Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis.

Bharati Pandey; Sonam Grover; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Aditi Singh; Jagdeep Kaur; Abhinav Grover

The latest resurrection of drug resistance poses serious threat to the treatment and control of the disease. Mutations have been detected in panD gene in the Mycobacterium tuberculosis (Mtb) strains. Mutation of histidine to arginine at residue 21 (H21R) and isoleucine to valine at residue 29 (I49V) in the non-active site of panD gene has led to PZA resistance. This study will help in reconnoitering the mechanism of pyrazinamide (PZA) resistance caused due to double mutation identified in the panD gene of M. tuberculosis clinical isolates. It is known that panD gene encodes aspartate decarboxylase essential for β-alanine synthesis that makes it a potential therapeutic drug target for tuberculosis treatment. The knowledge about the molecular mechanism conferring drug resistance in M. tuberculosis is scarce, which is a significant challenge in designing successful therapeutic drug. In this study, structural and dynamic repercussions of H21R-I49V double mutation in panD complexed with PZA have been corroborated through docking and molecular dynamics based simulation. The double mutant (DM) shows low docking score and thus, low binding affinity for PZA as compared to the native protein. It was observed that the mutant protein exhibits more structural fluctuation at the ligand binding site in comparison to the native type. Furthermore, the flexibility and compactness analyses indicate that the double mutation influence interaction of PZA with the protein. The hydrogen-bond interaction patterns further supported our results. The covariance and PCA analysis elucidated that the double mutation affects the collective motion of residues in phase space. The results have been presented with an explanation for the induced drug resistance conferred by the H21R-I49V double mutation in panD gene and gain valuable insight to facilitate the advent of efficient therapeutics for combating resistance against PZA.


BioMed Research International | 2014

Development of Dual Inhibitors against Alzheimer’s Disease Using Fragment-Based QSAR and Molecular Docking

Manisha Goyal; Jaspreet Kaur Dhanjal; Sukriti Goyal; Chetna Tyagi; Rabia Hamid; Abhinav Grover

Alzheimers (AD) is the leading cause of dementia among elderly people. Considering the complex heterogeneous etiology of AD, there is an urgent need to develop multitargeted drugs for its suppression. β-amyloid cleavage enzyme (BACE-1) and acetylcholinesterase (AChE), being important for AD progression, have been considered as promising drug targets. In this study, a robust and highly predictive group-based QSAR (GQSAR) model has been developed based on the descriptors calculated for the fragments of 20 1,4-dihydropyridine (DHP) derivatives. A large combinatorial library of DHP analogues was created, the activity of each compound was predicted, and the top compounds were analyzed using refined molecular docking. A detailed interaction analysis was carried out for the top two compounds (EDC and FDC) which showed significant binding affinity for BACE-1 and AChE. This study paves way for consideration of these lead molecules as prospective drugs for the effective dual inhibition of BACE-1 and AChE. The GQSAR model provides site-specific clues about the molecules where certain modifications can result in increased biological activity. This information could be of high value for design and development of multifunctional drugs for combating AD.


PLOS ONE | 2016

Hydrophobic Interactions Are a Key to MDM2 Inhibition by Polyphenols as Revealed by Molecular Dynamics Simulations and MM/PBSA Free Energy Calculations

Sharad Verma; Sonam Grover; Chetna Tyagi; Sukriti Goyal; Salma Jamal; Aditi Singh; Abhinav Grover

p53, a tumor suppressor protein, has been proven to regulate the cell cycle, apoptosis, and DNA repair to prevent malignant transformation. MDM2 regulates activity of p53 and inhibits its binding to DNA. In the present study, we elucidated the MDM2 inhibition potential of polyphenols (Apigenin, Fisetin, Galangin and Luteolin) by MD simulation and MM/PBSA free energy calculations. All polyphenols bind to hydrophobic groove of MDM2 and the binding was found to be stable throughout MD simulation. Luteolin showed the highest negative binding free energy value of -173.80 kJ/mol followed by Fisetin with value of -172.25 kJ/mol. It was found by free energy calculations, that hydrophobic interactions (vdW energy) have major contribution in binding free energy.


BMC Genomics | 2014

Fragment based group QSAR and molecular dynamics mechanistic studies on arylthioindole derivatives targeting the α-β interfacial site of human tubulin.

Chetna Tyagi; Ankita Gupta; Sukriti Goyal; Jaspreet Kaur Dhanjal; Abhinav Grover

BackgroundA number of microtubule disassembly blocking agents and inhibitors of tubulin polymerization have been elements of great interest in anti-cancer therapy, some of them even entering into the clinical trials. One such class of tubulin assembly inhibitors is of arylthioindole derivatives which results in effective microtubule disorganization responsible for cell apoptosis by interacting with the colchicine binding site of the β-unit of tubulin close to the interface with the α unit. We modelled the human tubulin β unit (chain D) protein and performed docking studies to elucidate the detailed binding mode of actions associated with their inhibition. The activity enhancing structural aspects were evaluated using a fragment-based Group QSAR (G-QSAR) model and was validated statistically to determine its robustness. A combinatorial library was generated keeping the arylthioindole moiety as the template and their activities were predicted.ResultsThe G-QSAR model obtained was statistically significant with r2 value of 0.85, cross validated correlation coefficient q2 value of 0.71 and pred_r2 (r2 value for test set) value of 0.89. A high F test value of 65.76 suggests robustness of the model. Screening of the combinatorial library on the basis of predicted activity values yielded two compounds HPI (predicted pIC50 = 6.042) and MSI (predicted pIC50 = 6.001) whose interactions with the D chain of modelled human tubulin protein were evaluated in detail. A toxicity evaluation resulted in MSI being less toxic in comparison to HPI.ConclusionsThe study provides an insight into the crucial structural requirements and the necessary chemical substitutions required for the arylthioindole moiety to exhibit enhanced inhibitory activity against human tubulin. The two reported compounds HPI and MSI showed promising anti cancer activities and thus can be considered as potent leads against cancer. The toxicity evaluation of these compounds suggests that MSI is a promising therapeutic candidate. This study provided another stepping stone in the direction of evaluating tubulin inhibition and microtubule disassembly degeneration as viable targets for development of novel therapeutics against cancer.


Biochimie | 2016

Hsp90: Friends, clients and natural foes

Sharad Verma; Sukriti Goyal; Salma Jamal; Aditi Singh; Abhinav Grover

Hsp90, a homodimeric ATPase, is responsible for the correct folding of a number of newly synthesized polypeptides in addition to the correct folding of denatured/misfolded client proteins. It requires several co-chaperones and other partner proteins for chaperone activity. Due to the involvement of Hsp90-dependent client proteins in a variety of oncogenic signaling pathways, Hsp90 inhibition has emerged as one of the leading strategies for anticancer chemotherapeutics. Most of Hsp90 inhibitors blocks the N terminal ATP binding pocket and prevents the conformational changes which are essential for the loading of co-chaperones and client proteins. Several other inhibitors have also been reported which disrupt chaperone cycle in ways other than binding to N terminal ATP binding pocket. The Hsp90 inhibition is associated with heat shock response, mediated by HSF-1, to overcome the loss of Hsp90 and sustain cell survival. This review is an attempt to give an over view of all the important players of chaperone cycle.


BMC Genomics | 2015

Mechanistic analysis elucidating the relationship between Lys96 mutation in Mycobacterium tuberculosis pyrazinamidase enzyme and pyrazinamide susceptibility

Chakshu Vats; Jaspreet Kaur Dhanjal; Sukriti Goyal; Ankita Gupta; Navneeta Bharadvaja; Abhinav Grover

Background Pyrazinamide (PZA) is one of the most effective first line treatments against tuberculosis disease. The drug generally has bacteriostatic action. It also acts on bacterial spores which eliminates the chances of resurfacing of the infection. However, in recent years there has been a major increase in the occurrence of drug resistant bacterial strains. Resistance against PZA is caused by mutations in pyrazinamidase (PncA) protein which is the activator of the prodrug PZA. In the present study, we have tried to gain insights into the mechanism by which resistance develops due to K96R mutation occurring in the PncA catalytic region Results The binding cavity analysis showed an increase of 762.3 A 3 in the volume of the mutant protein. Docking studies revealed that PZA has a greater binding affinity for the native protein in comparison to the mutant protein. Molecular dynamics simulations further showed the role of flap region, which is present in PncA protein, in development of resistance to the drug. Conclusion The residues of flap region acquire more flexibility in mutant form of protein and thus move away from the active site. This leads to weak binding of the drug to the target residues which might interfere with the activation of the drug to functional form thereby giving rise to drug resistant bacterial strains. Background


BMC Bioinformatics | 2015

Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease

Ankita Gupta; Salma Jamal; Sukriti Goyal; Ritu Jain; Divya Wahi; Abhinav Grover

BackgroundThe human immunodeficiency virus (HIV-1) is a retrovirus causing acquired immunodeficiency syndrome (AIDS), which has become a serious problem across the world and has no cure reported to date. Human immunodeficiency virus (HIV-1) protease is an attractive target for antiviral treatment and a number of therapeutically useful inhibitors have been designed against it. The emergence of drug resistant mutants of HIV-1 poses a serious problem for conventional therapies that have been used so far. Until now, thirteen protease inhibitors (PIs), major mutation sites and many secondary mutations have been listed in the HIV Drug Resistance Database. In this study, we have studied the effect of the V77I mutation in HIV-PR along with the co-occurring mutations L33F and K20T through multi-nanosecond molecular dynamics simulations. V77I is known to cause Nelfinavir (NFV) resistance in the subtype B population of HIV-1 protease. We have for the first time reported the effect of this clinically relevant mutation on the binding of Nelfinavir and the conformational flexibility of the protease.ResultsTwo HIV-PR mutants have been considered in this study - the Double Mutant Protease (DBM) V77I-L33F and Triple Mutant Protease (TPM) V77I-K20T-L33F. The molecular dynamics simulation studies were carried out and the RMSD trajectories of the unliganded wild type and mutated protease were found to be stable. The binding affinity of NFV with wild type HIV-PR was very high with a Glide XP docking score of -9.3 Kcal/mol. NFV showed decreased affinity towards DBM with a docking score of -8.0 Kcal/mol, whereas its affinity increased towards TPM (Glide XP score: -10.3). Prime/MM-GBSA binding free energy of the wild type, DBM and TPM HIV-PR docked structures were calculated as -38.9, -11.1 and -42.6 Kcal/mol respectively. The binding site cavity volumes of wild type, DBM and TPM protease were 1186.1, 1375.5 and 1042.5 Å3 respectively.ConclusionIn this study, we have studied the structural roles of the two HIV-PR mutations by conducting molecular dynamics simulation studies of the wild type and mutant HIV-1 PRs. The present study proposes that DBM protease showed greater flexibility and the flap separation was greater with respect to the wild type protease. The cavity size of the MD-stabilized DBM was also found to be increased, which may be responsible for the decreased interaction of Nelfinavir with the cavity residues, thus explaining the decreased binding affinity. On the other hand, the binding affinity of NFV for TPM was found to be enhanced, accounted for by the decrease in cavity size of the mutant which facilitated strong interactions with the flap residues. The flap separation of TPM was less than the wild type protease and the decreased cavity size may be responsible for its lower resistance, and hence, may be the reason for its lower clinical relevance.


BMC Genomics | 2013

Mechanistic insights into mode of action of novel natural cathepsin L inhibitors

Chetna Tyagi; Sonam Grover; Jaspreet Kaur Dhanjal; Sukriti Goyal; Manisha Goyal; Abhinav Grover

BackgroundDevelopment of a cancerous cell takes place when it ceases to respond to growth-inhibiting signals and multiplies uncontrollably and can detach and move to other parts of the body; the process called as metastasis. A particular set of cysteine proteases are very active during cancer metastasis, Cathepsins being one of them. They are involved in tumor growth and malignancy and have also been reported to be overexpressed in tumor cell lines. In the present study, a combinatorial approach comprising three-dimensional quantitative structure-activity relationship (3D QSAR), ligand-based pharmacophore modelling and search followed by cathepsin L structure-based high throughput screening was carried out using an initial set of 28 congeneric thiosemicarbazone derivatives as cathepsin L inhibitors. A 3D QSAR was derived using the alignment of a common thiosemicarbazone substructure. Essential structural features responsible for biological activity were taken into account for development of a pharmacophore model based on 29 congeneric thiosemicarbazone derivatives. This model was used to carry out an exhaustive search on a large dataset of natural compounds. A further cathepsin L structure-based screen identified two top scoring compounds as potent anti-cancer leads.ResultsThe generated 3D QSAR model showed statistically significant results with an r2 value of 0.8267, cross-validated correlation coefficient q2 of 0.7232, and a pred_r2 (r2 value for test set) of 0.7460. Apart from these, a high F test value of 30.2078 suggested low probability of the models failure. The pharmacophoric hypothesis chosen for searching the natural compound libraries was identified as DDHRR, where two Ds denote 2 hydrogen donors, H represents a hydrophobic group and two Rs represent aromatic rings, all of which are essential for the biological activity. We report two potential drug leads ZINC08764437 (NFP) and ZINC03846634 (APQ) obtained after a combined approach of pharmacophore-based search and structure-based virtual screen. These two compounds displayed extra precision docking scores of -7.972908 and -7.575686 respectively suggesting considerable binding affinity for cathepsin L. High activity values of 5.72 and 5.75 predicted using the 3D QSAR model further substantiated the inhibitory potential of these identified leads.ConclusionThe present study attempts to correlate the structural features of thiosemicarbazone group with their biological activity by development of a robust 3D QSAR model. Being statistically valid, this model provides near accurate values of the activities predicted for the congeneric set on which it is based. These predicted activities are good for the test set compounds making it indeed a statistically sound 3D QSAR model. The identified pharmacophore model DDHRR.8 comprised of all the essential features required to interact with the catalytic triad of cathepsin L. A search for natural compounds based on this pharmacophore followed by docking studies further screened out two top scoring candidates: NFP and AFQ. The high binding affinity and presence of essential structural features in these two compounds make them ideal for consideration as natural anti-tumoral agents. Activity prediction using 3D QSAR model further validated their potential as worthy drug candidates against cathepsin L for treatment of cancer.


Chemical Biology & Drug Design | 2014

Novel Fragment‐Based QSAR Modeling and Combinatorial Design of Pyrazole‐Derived CRK3 Inhibitors as Potent Antileishmanials

Sukriti Goyal; Jaspreet Kaur Dhanjal; Chetna Tyagi; Manisha Goyal; Abhinav Grover

The CRK3 cyclin‐dependent kinase of Leishmania plays an important role in regulating the cell‐cycle progression at the G2/M phase checkpoint transition, proliferation, and viability inside the host macrophage. In this study, a novel fragment‐based QSAR model has been developed using 22 pyrazole‐derived compounds exhibiting inhibitory activity against Leishmanial CRK3. Unlike other QSAR methods, this fragment‐based method gives flexibility to study the relationship between molecular fragments of interest and their contribution for the variation in the biological response by evaluating cross‐term fragment descriptors. Based on the fragment‐based QSAR model, a combinatorial library was generated, and top two compounds were reported after predicting their activity. The QSAR model showed satisfactory statistical parameters for the data set (r2 = 0.8752, q2 = 0.6690, F‐ratio = 30.37, and pred_r2 = 0.8632) with four descriptors describing the nature of substituent groups and the environment of the substitution site. Evaluation of the model implied that electron‐rich substitution at R1 position improves the inhibitory activity, while decline in inhibitory activity was observed in presence of nitrogen at R2 position. The analysis carried out in this study provides a substantial basis for consideration of the designed pyrazole‐based leads as potent antileishmanial drugs.


BMC Genomics | 2015

Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships

Sukriti Goyal; Salma Jamal; Asheesh Shanker; Abhinav Grover

BackgroundThe epidermal growth factor receptor (EGFR) is a member of the ErbB family that is involved in a number of processes responsible for cancer development and progression such as angiogenesis, apoptosis, cell proliferation and metastatic spread. Malfunction in activation of protein tyrosine kinases has been shown to result in uncontrolled cell growth. The EGFR TK domain has been identified as suitable target in cancer therapy and tyrosine kinase inhibitors such as erlotinib have been used for treatment of cancer. Mutations in the region of the EGFR gene encoding the tyrosine kinase (TK) domain causes altered responses to EGFR TK inhibitors (TKI). In this paper we perform molecular dynamics simulations and PCA analysis on wild-type and mutant (T854A) structures to gain insight into the structural changes observed in the target protein upon mutation. We also report two novel inhibitors identified by combined approach of QSAR model development.ResultsThe wild-type and mutant structure was observed to be stable for 26 ns and 24 ns respectively. In PCA analysis, the mutant structure proved to be more flexible than wild-type. We developed a 3D-QSAR model using 38 thiazolyl-pyrazoline compounds which was later used for prediction of inhibitory activity of natural compounds of ZINC library. The 3D-QSAR model was proved to be robust by the statistical parameters such as r2 (0.9751), q2(0.9491) and pred_r2(0.9525).ConclusionAnalysis of molecular dynamics simulations results indicate stability loss and increased flexibility in the mutant structure. This flexibility results in structural changes which render the mutant protein drug resistant against erlotinib. We report two novel compounds having high predicted inhibitory activity to EGFR TK domain with both wild-type and mutant structure.

Collaboration


Dive into the Sukriti Goyal's collaboration.

Top Co-Authors

Avatar

Abhinav Grover

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chetna Tyagi

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonam Grover

Indian Institute of Technology Delhi

View shared research outputs
Top Co-Authors

Avatar

Divya Wahi

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ritu Jain

Jawaharlal Nehru University

View shared research outputs
Top Co-Authors

Avatar

Sharad Verma

Jawaharlal Nehru University

View shared research outputs
Researchain Logo
Decentralizing Knowledge