Suleyman A. Gokoglu
Glenn Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Suleyman A. Gokoglu.
39th AIAA Fluid Dynamics Conference | 2009
Suleyman A. Gokoglu; Maria A. Kuczmarski; Dennis E. Culley; Surya Raghu
The internal flow structure in a specific fluidic diverter is studied over a range from low subsonic to sonic inlet conditions by a time-dependent numerical analysis. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The velocity, temperature and pressure fields are calculated for subsonic conditions and the self-induced oscillatory behavior of the flow is successfully predicted. The results of our numerical studies have excellent agreement with our experimental measurements of oscillation frequencies. The acoustic speed in the gaseous medium is determined to be a key factor for up to sonic conditions in governing the mechanism of initiating the oscillations as well as determining its frequency. The feasibility of employing plasma actuation with a minimal perturbation level is demonstrated in steadystate calculations to also produce oscillation frequencies of our own choosing instead of being dependent on the fixed-geometry fluidic device.
5th Flow Control Conference | 2010
Suleyman A. Gokoglu; Maria A. Kuczmarski; Dennis E. Culley; Surya Raghu
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions.
41st AIAA Fluid Dynamics Conference and Exhibit | 2011
Suleyman A. Gokoglu; Maria A. Kuczmarski; Dennis E. Culley; Surya Raghu
In this paper, we study the effect of boundary conditions on the behavior of an array of uniformly-spaced fluidic diverters with an ultimate goal to passively control their output phase. This understanding will aid in the development of advanced designs of actuators for flow control applications in turbomachinery. Computations show that a potential design is capable of generating synchronous outputs for various inlet boundary conditions if the flow inside the array is initiated from quiescence. However, when the array operation is originally asynchronous, several approaches investigated numerically demonstrate that resynchronization of the actuators in the array is not practical since it is very sensitive to asymmetric perturbations and imperfections. Experimental verification of the insights obtained from the present study is currently being pursued.
SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM‐STAIF 2008: 12th Conference on Thermophysics Applications in Microgravity; 1st Symposium on Space Resource Utilization; 25th Symposium on Space Nuclear Power and Propulsion; 6th Conference on Human/Robotic Technology and the Vision for Space Exploration; 6th Symposium on Space Colonization; 5th Symposium on New Frontiers and Future Concept | 2008
U. Hegde; R. Balasubramaniam; Suleyman A. Gokoglu
System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the rego...
42nd International Conference on Environmental Systems | 2012
Suleyman A. Gokoglu; Justin E. Niehaus; Sandra L. Olson; Daniel L. Dietrich; Gary A. Ruff; Paul V. Ferkul; Michael C. Johnston
The combustion of flammable material in a sealed chamber invariably leads to an initial pressure rise in the volume. The pressure rise is due to the increase in the total number of gaseous moles (condensed fuel plus chamber oxygen combining to form gaseous carbon dioxide and water vapor) and, most importantly, the temperature rise of the gas in the chamber. Though the rise in temperature and pressure would reduce with time after flame extinguishment due to the absorption of heat by the walls and contents of the sealed spacecraft, the initial pressure rise from a fire, if large enough, could lead to a vehicle overpressure and the release of gas through the pressure relief valve. This paper presents a simple lumped-parameter model of the pressure rise in a sealed chamber resulting from the heat release during combustion. The transient model considers the increase in gaseous moles due to combustion, and heat transfer to the chamber walls by convection and radiation and to the fuel-sample holder by conduction, as a function of the burning rate of the material. The results of the model are compared to the pressure rise in an experimental chamber during flame spread tests as well as to the pressure fall-off after flame extinguishment. The experiments involve flame spread over thin solid fuel samples. Estimates of the heat release rate profiles for input to the model come from the assumed stoichiometric burning of the fuel along with the observed flame spread behavior. The sensitivity of the model to predict maximum chamber pressure is determined with respect to the uncertainties in input parameters. Model predictions are also presented for the pressure profile anticipated in the Fire Safety-1 experiment, a material flammability and fire safety experiment proposed for the European Space Agency (ESA) Automated Transfer Vehicle (ATV). Computations are done for a range of scenarios including various initial pressures and sample sizes. Based on these results, various mitigation approaches are suggested to prevent vehicle over-pressurization and help guide the definition of the space experiment. Nomenclature Af = area of the flame over the fuel-sample surface, m 2 Aw = area of the total available surfaces heat is convected to, m 2
47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition | 2009
Uday Hegde; Ramaswamy Balasubramaniam; Suleyman A. Gokoglu
Hydrogen reduction of lunar regolith has been proposed as a viable technology for oxygen production on the moon. Hydrogen reduces FeO present in the lunar regolith to form metallic iron and water. The water may be electrolyzed to recycle the hydrogen and produce oxygen. Depending upon the regolith composition, FeO may be bound to TiO2 as ilmenite or it may be dispersed in glassy substrates. Some testing of hydrogen reduction has been conducted with Apollo-returned lunar regolith samples. However, due to the restricted amount of lunar material available for testing, detailed understanding and modeling of the reduction process in regolith have not yet been developed. As a step in this direction, hydrogen reduction studies have been carried out in more detail with lunar regolith simulants such as JSC-1A by NASA and other organizations. While JSC-1A has some similarities with lunar regolith, it does not duplicate the wide variety of regolith types on the moon, for example, it contains almost no ilmenite. Nonetheless, it is a good starting point for developing an understanding of the hydrogen reduction process with regolith-like material. In this paper, a model utilizing a shrinking core formulation coupled with the reactor flow is described and validated against experimental data on hydrogen reduction of JSC-1A.
48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition | 2010
Ramaswamy Balasubramaniam; Suleyman A. Gokoglu; Kurt Sacksteder; Robert S. Wegeng; Nantel H. Suzuki
The realization of the renewed exploration of the moon presents many technical challenges; among them is the survival of lunar surface assets during periods of darkness when the lunar environment is very cold. Thermal wadis are engineered sources of stored solar energy using modified lunar regolith as a thermal storage mass that can supply energy to protect lightweight robotic rovers or other assets during the lunar night. This paper describes an extension of an earlier analysis of performance of thermal wadis based on the known solar illumination of the moon and estimates of producible thermal properties of modified lunar regolith. The current analysis has been performed for the lunar equatorial region and validates the formerly used one-dimensional model by comparison of predictions to those obtained from two- and three-dimensional computations. It includes the effects of a thin dust layer covering the surface of the wadi, and incorporating either water as a phasechange material or aluminum stakes as a high thermal conductivity material into the regolith. The calculations indicate that thermal wadis can provide the desired thermal energy and temperature control for the survival of rovers or other equipment during periods of darkness.
47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition | 2009
Diane L. Linne; Suleyman A. Gokoglu; Uday Hegde; Ramaswamy Balasubramaniam; Edgardo Santiago-Maldonado
Component and system sensitivities of some design parameters of ISRU system components are analyzed. The differences between terrestrial and lunar excavation are discussed, and a qualitative comparison of large and small excavators is started. The effect of excavator size on the size of the ISRU plant’s regolith hoppers is presented. Optimum operating conditions of both hydrogen and carbothermal reduction reactors are explored using recently developed analytical models. Design parameters such as batch size, conversion fraction, and maximum particle size are considered for a hydrogen reduction reactor while batch size, conversion fraction, number of melt zones, and methane flow rate are considered for a carbothermal reduction reactor. For both reactor types the effect of reactor operation on system energy and regolith delivery requirements is presented.
7th Symposium on Space Resource Utilization | 2014
Diane L. Linne; Bryan A. Palaszewski; Suleyman A. Gokoglu; Christopher A. Gallo; Ramaswamy Balasubramaniam; Uday Hegde
The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon.
SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2007: 11th Conf Thermophys.Applic.in Micrograv.; 24th Symp Space Nucl.Pwr.Propulsion; 5th Conf Hum/Robotic Techn & Vision Space Explor.; 5th Symp Space Coloniz.; 4th Symp New Frontrs & Future Con | 2007
U. Hegde; R. Balasubramaniam; Suleyman A. Gokoglu
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite‐containing regolith by a continuous flow of hydrogen in a flow‐through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fra...