Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Suljo Linic is active.

Publication


Featured researches published by Suljo Linic.


Nature Materials | 2011

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy

Suljo Linic; Phillip Christopher; David B. Ingram

Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.


Nature Chemistry | 2011

Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures

Phillip Christopher; Hongliang Xin; Suljo Linic

Catalysis plays a critical role in chemical conversion, energy production and pollution mitigation. High activation barriers associated with rate-limiting elementary steps require most commercial heterogeneous catalytic reactions to be run at relatively high temperatures, which compromises energy efficiency and the long-term stability of the catalyst. Here we show that plasmonic nanostructures of silver can concurrently use low-intensity visible light (on the order of solar intensity) and thermal energy to drive catalytic oxidation reactions--such as ethylene epoxidation, CO oxidation, and NH₃ oxidation--at lower temperatures than their conventional counterparts that use only thermal stimulus. Based on kinetic isotope experiments and density functional calculations, we postulate that excited plasmons on the silver surface act to populate O₂ antibonding orbitals and so form a transient negative-ion state, which thereby facilitates the rate-limiting O₂-dissociation reaction. The results could assist the design of catalytic processes that are more energy efficient and robust than current processes.


Journal of the American Chemical Society | 2011

Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface

David B. Ingram; Suljo Linic

A critical factor limiting the rates of photocatalytic reactions, including water splitting, on oxide semiconductors is the high rate of charge-carrier recombination. In this contribution, we demonstrate that this issue can be alleviated significantly by combining a semiconductor photocatalyst with tailored plasmonic-metal nanostructures. Plasmonic nanostructures support the formation of resonant surface plasmons in response to a photon flux, localizing electromagnetic energy close to their surfaces. We present evidence that the interaction of localized electric fields with the neighboring semiconductor allows for the selective formation of electron/hole (e(-)/h(+)) pairs in the near-surface region of the semiconductor. The advantage of the formation of e(-)/h(+) pairs near the semiconductor surface is that these charge carriers are readily separated from each other and easily migrate to the surface, where they can perform photocatalytic transformations.


Nature Materials | 2015

Photochemical transformations on plasmonic metal nanoparticles

Suljo Linic; Umar Aslam; Calvin Boerigter; Matthew Morabito

The strong interaction of electromagnetic fields with plasmonic nanomaterials offers opportunities in various technologies that take advantage of photophysical processes amplified by this light-matter interaction. Recently, it has been shown that in addition to photophysical processes, optically excited plasmonic nanoparticles can also activate chemical transformations directly on their surfaces. This potentially offers a number of opportunities in the field of selective chemical synthesis. In this Review we summarize recent progress in the field of photochemical catalysis on plasmonic metallic nanostructures. We discuss the underlying physical mechanisms responsible for the observed chemical activity, and the issues that must be better understood to see progress in the field of plasmon-mediated photocatalysis.


Nature Materials | 2012

Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures

Phillip Christopher; Hongliang Xin; A. Marimuthu; Suljo Linic

The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝ intensity(n), with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.


Science | 2013

Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State

A. Marimuthu; Jianwen Zhang; Suljo Linic

Copper in the Spotlight Elemental copper should, in principle, be a productive catalyst for the commercial preparation of propylene oxide; however, in practice, surface oxidation under industrial conditions quickly diminishes selectivity below a useful threshold. Marimuthu et al. (p. 1590) now show that irradiating the copper with visible light during the reaction excites surface plasmon resonances that lead to reduction of the oxide coating and restore selectivity. In situ visible light irradiation reverses the oxidative degradation of a copper catalyst, thereby enhancing its viability. Oxidation of functioning copper has restricted its applicability as a catalyst for commercially important epoxidation of propylene to form propylene oxide. Here, we report that steady-state selectivity in propylene epoxidation on copper (Cu) nanoparticles increases sharply when the catalyst is illuminated with visible light. The selectivity increase is accompanied by light-induced reduction of the surface Cu atoms, which is brought about by photoexcitation of the localized surface plasmon resonance (LSPR) of Cu. We discuss multiple mechanisms by which Cu LSPR weakens the Cu-O bonds, reducing Cu2O.


Journal of the American Chemical Society | 2008

Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts.

Phillip Christopher; Suljo Linic

Controlling selectivity in heterogeneous catalysis is critical for the design of environmentally friendly catalytic processes that minimize the production of undesired byproducts and operate with high energy efficiency. We show that the Ag nanowire catalysts exhibit higher selectivity in the ethylene epoxidation reaction than conventional spherical particle catalysts. The higher selectivity of the nanowire catalysts was attributed to a higher concentration of the Ag(100) surface facets in the nanowire catalysts compared to the particle catalysts. Density functional theory calculations show that the transformation of the surface oxametallacycle intermediate to form the selective product, EO, is more favorable on the Ag(100) than on Ag(111). The studies show that recent advances in the controlled synthesis of uniform nanostructures with well-defined surface facets might provide an important platform for the design of highly selective heterogeneous catalysts.


Nature Chemistry | 2014

High-performance Ag–Co alloy catalysts for electrochemical oxygen reduction

Adam Holewinski; Juan Carlos Idrobo; Suljo Linic

The electrochemical oxygen reduction reaction is the limiting half-reaction for low-temperature hydrogen fuel cells, and currently costly Pt-based electrocatalysts are used to generate adequate rates. Although most other metals are not stable in typical acid-mediated cells, alkaline environments permit the use of less costly electrodes, such as silver. Unfortunately, monometallic silver is not sufficiently active for economical fuel cells. Herein we demonstrate the design of low-cost Ag-Co surface alloy nanoparticle electrocatalysts for oxygen reduction. Their performance relative to that of Pt is potential dependent, but reaches over half the area-specific activity of Pt nanoparticle catalysts and is more than a fivefold improvement over pure silver nanoparticles at typical operating potentials. The Ag-Co electrocatalyst was initially identified with quantum chemical calculations and then synthesized using a novel technique that generates a surface alloy, despite bulk immiscibility of the constituent materials. Characterization studies support the hypothesis that the activity improvement comes from a ligand effect, in which cobalt atoms perturb surface silver sites.


Journal of the American Chemical Society | 2011

High Activity Carbide Supported Catalysts for Water Gas Shift

Neil M. Schweitzer; Joshua A. Schaidle; Obiefune K. Ezekoye; Xiaoqing Pan; Suljo Linic; Levi T. Thompson

Nanostructured carbides are refractory materials with high surface areas that could be used as alternatives to the oxide materials that are widely used as support materials for heterogeneous catalysts. Carbides are also catalytically active for a variety of reactions, offering additional opportunities to tune the overall performance of the catalyst. In this paper we describe the synthesis of molybdenum carbide supported platinum (Pt/Mo(2)C) catalysts and their rates for the water gas shift reaction. The synthesis method allowed interaction of the metal precursor with the native, unpassivated support. The resulting materials possessed very high WGS rates and atypical Pt particle morphologies. Under differential conditions, rates for these catalysts were higher than those for the most active oxide-supported Pt catalysts and a commercial Cu-Zn-Al catalyst. Experimental and computational results suggested that active sites on the Pt/Mo(2)C catalysts were located on the perimeter of the Pt particles and that strong interactions between Pt and the Mo(2)C surface gave rise to raft-like particles.


Accounts of Chemical Research | 2013

Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.

Suljo Linic; Phillip Christopher; Hongliang Xin; A. Marimuthu

Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles represent a new family of chemical transformations exhibiting fundamentally different behavior compared with phonon-driven thermal processes, potentially allowing selective bond activation. In this Account, we discuss both the impact of the shape of metal nanoparticles on the outcome of heterogeneous catalytic reactions and the direct, electron-driven photocatalysis on plasmonic metal nanostructures of noble metals. These two phenomena are important examples of taking advantage of physical properties of metal materials that are controlled at nanoscales to affect chemical transformations.

Collaboration


Dive into the Suljo Linic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Umar Aslam

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge