Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Phillip Christopher is active.

Publication


Featured researches published by Phillip Christopher.


Nature Materials | 2011

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy

Suljo Linic; Phillip Christopher; David B. Ingram

Recent years have seen a renewed interest in the harvesting and conversion of solar energy. Among various technologies, the direct conversion of solar to chemical energy using photocatalysts has received significant attention. Although heterogeneous photocatalysts are almost exclusively semiconductors, it has been demonstrated recently that plasmonic nanostructures of noble metals (mainly silver and gold) also show significant promise. Here we review recent progress in using plasmonic metallic nanostructures in the field of photocatalysis. We focus on plasmon-enhanced water splitting on composite photocatalysts containing semiconductor and plasmonic-metal building blocks, and recently reported plasmon-mediated photocatalytic reactions on plasmonic nanostructures of noble metals. We also discuss the areas where major advancements are needed to move the field of plasmon-mediated photocatalysis forward.


Nature Chemistry | 2011

Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures

Phillip Christopher; Hongliang Xin; Suljo Linic

Catalysis plays a critical role in chemical conversion, energy production and pollution mitigation. High activation barriers associated with rate-limiting elementary steps require most commercial heterogeneous catalytic reactions to be run at relatively high temperatures, which compromises energy efficiency and the long-term stability of the catalyst. Here we show that plasmonic nanostructures of silver can concurrently use low-intensity visible light (on the order of solar intensity) and thermal energy to drive catalytic oxidation reactions--such as ethylene epoxidation, CO oxidation, and NH₃ oxidation--at lower temperatures than their conventional counterparts that use only thermal stimulus. Based on kinetic isotope experiments and density functional calculations, we postulate that excited plasmons on the silver surface act to populate O₂ antibonding orbitals and so form a transient negative-ion state, which thereby facilitates the rate-limiting O₂-dissociation reaction. The results could assist the design of catalytic processes that are more energy efficient and robust than current processes.


Nature Materials | 2012

Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures

Phillip Christopher; Hongliang Xin; A. Marimuthu; Suljo Linic

The field of heterogeneous photocatalysis has almost exclusively focused on semiconductor photocatalysts. Herein, we show that plasmonic metallic nanostructures represent a new family of photocatalysts. We demonstrate that these photocatalysts exhibit fundamentally different behaviour compared with semiconductors. First, we show that photocatalytic reaction rates on excited plasmonic metallic nanostructures exhibit a super-linear power law dependence on light intensity (rate ∝ intensity(n), with n > 1), at significantly lower intensity than required for super-linear behaviour on extended metal surfaces. We also demonstrate that, in sharp contrast to semiconductor photocatalysts, photocatalytic quantum efficiencies on plasmonic metallic nanostructures increase with light intensity and operating temperature. These unique characteristics of plasmonic metallic nanostructures suggest that this new family of photocatalysts could prove useful for many heterogeneous catalytic processes that cannot be activated using conventional thermal processes on metals or photocatalytic processes on semiconductors.


Journal of the American Chemical Society | 2008

Engineering selectivity in heterogeneous catalysis: Ag nanowires as selective ethylene epoxidation catalysts.

Phillip Christopher; Suljo Linic

Controlling selectivity in heterogeneous catalysis is critical for the design of environmentally friendly catalytic processes that minimize the production of undesired byproducts and operate with high energy efficiency. We show that the Ag nanowire catalysts exhibit higher selectivity in the ethylene epoxidation reaction than conventional spherical particle catalysts. The higher selectivity of the nanowire catalysts was attributed to a higher concentration of the Ag(100) surface facets in the nanowire catalysts compared to the particle catalysts. Density functional theory calculations show that the transformation of the surface oxametallacycle intermediate to form the selective product, EO, is more favorable on the Ag(100) than on Ag(111). The studies show that recent advances in the controlled synthesis of uniform nanostructures with well-defined surface facets might provide an important platform for the design of highly selective heterogeneous catalysts.


Accounts of Chemical Research | 2013

Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.

Suljo Linic; Phillip Christopher; Hongliang Xin; A. Marimuthu

Heterogeneous catalysis by metals was among the first enabling technologies that extensively relied on nanoscience. The early intersections of catalysis and nanoscience focused on the synthesis of catalytic materials with high surface to volume ratio. These synthesis strategies mainly involved the impregnation of metal salts on high surface area supports. This would usually yield quasi-spherical nanoparticles capped by low-energy surface facets, typically with closely packed metal atoms. These high density areas often function as the catalytically active surface sites. Unfortunately, strategies to control the functioning surface facet (i.e., the geometry of active sites that performs catalytic turnover) are rare and represent a significant challenge in our ability to fine-tune and optimize the reactive surfaces. Through recent developments in colloidal chemistry, chemists have been able to synthesize metallic nanoparticles of both targeted size and desired shape. This has opened new possibilities for the design of heterogeneous catalytic materials, since metal nanoparticles of different shapes are terminated with different surface facets. By controlling the surface facet exposed to reactants, we can start affecting the chemical transformations taking place on the metal particles and changing the outcome of catalytic processes. Controlling the size and shape of metal nanoparticles also allows us to control the optical properties of these materials. For example, noble metals nanoparticles (Au, Ag, Cu) interact with UV-vis light through an excitation of localized surface plasmon resonance (LSPR), which is highly sensitive to the size and shape of the nanostructures. This excitation is accompanied by the creation of short-lived energetic electrons on the surface of the nanostructure. We showed recently that these energetic electrons could drive photocatalytic transformations on these nanostructures. The photocatalytic, electron-driven processes on metal nanoparticles represent a new family of chemical transformations exhibiting fundamentally different behavior compared with phonon-driven thermal processes, potentially allowing selective bond activation. In this Account, we discuss both the impact of the shape of metal nanoparticles on the outcome of heterogeneous catalytic reactions and the direct, electron-driven photocatalysis on plasmonic metal nanostructures of noble metals. These two phenomena are important examples of taking advantage of physical properties of metal materials that are controlled at nanoscales to affect chemical transformations.


Journal of the American Chemical Society | 2015

Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

John C. Matsubu; Vanessa N. Yang; Phillip Christopher

CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.


Chemcatchem | 2010

Shape‐ and Size‐Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation

Phillip Christopher; Suljo Linic

Catalytic selectivity in the epoxidation of ethylene to form ethylene oxide on alumina‐supported silver catalysts is dependent on the geometric structure of catalytically active Ag particles and reaction conditions. Shape and size controlled synthesis of Ag nanoparticles is used to show that silver nanocubes exhibit higher selectivity than nanowires and nanospheres. For a given shape, larger particles offer improved selectivity. The enhanced selectivity toward ethylene oxide is attributed to the nature of the exposed Ag surface facets; Ag nanocubes and nanowires are dominated by (100) surface facet and Ag nanospheres are dominated by (111). Furthermore, the concentration of undercoordinated surface sites is related to diminished selectivity to ethylene oxide. We demonstrate that a simple model can account for the impact of chemical and physical factors on the reaction selectivity. These observations have also been used to design a selective catalyst for the ethylene epoxidation reaction.


Nature Chemistry | 2017

Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts

John C. Matsubu; Shuyi Zhang; Leo DeRita; Nebojsa Marinkovic; Jingguang G. Chen; George W. Graham; Xiaoqing Pan; Phillip Christopher

The optimization of supported metal catalysts predominantly focuses on engineering the metal site, for which physical insights based on extensive theoretical and experimental contributions have enabled the rational design of active sites. Although it is well known that supports can influence the catalytic properties of metals, insights into how metal-support interactions can be exploited to optimize metal active-site properties are lacking. Here we utilize in situ spectroscopy and microscopy to identify and characterize a support effect in oxide-supported heterogeneous Rh catalysts. This effect is characterized by strongly bound adsorbates (HCOx) on reducible oxide supports (TiO2 and Nb2O5) that induce oxygen-vacancy formation in the support and cause HCOx-functionalized encapsulation of Rh nanoparticles by the support. The encapsulation layer is permeable to reactants, stable under the reaction conditions and strongly influences the catalytic properties of Rh, which enables rational and dynamic tuning of CO2-reduction selectivity.


Nano Letters | 2014

Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate-metal bonds.

Matthew J. Kale; Talin Avanesian; Hongliang Xin; Jun Yan; Phillip Christopher

Engineering heterogeneous metal catalysts for high selectivity in thermal driven reactions typically involves the synthesis of nanostructures with well-controlled geometries and compositions. However, inherent relationships between the energetics of elementary steps limit the control of catalytic selectivity through these approaches. Photon excitation of metal catalysts can induce chemical reactivity channels that cannot be accessed using thermal energy, although the potential for targeted activation of adsorbate-metal bonds is limited because the processes of photon absorption and adsorbate-metal bond photoexcitation are typically separated spatially. Here, we show that the use of sub-5-nanometer metal particles as photocatalysts enables direct photoexcitation of hybridized adsorbate-metal states as the dominant mechanism driving photochemistry. Activation of targeted adsorbate-metal bonds through direct photoexcitation of hybridized electronic states enabled selectivity control in preferential CO oxidation in H2 rich streams. This mechanism opens new avenues to drive selective catalytic reactions that cannot be achieved using thermal energy.


Annual Review of Physical Chemistry | 2017

Hot Charge Carrier Transmission from Plasmonic Nanostructures

Phillip Christopher; Martin Moskovits

Surface plasmons have recently been harnessed to carry out processes such as photovoltaic current generation, redox photochemistry, photocatalysis, and photodetection, all of which are enabled by separating energetic (hot) electrons and holes-processes that, previously, were the domain of semiconductor junctions. Currently, the power conversion efficiencies of systems using plasmon excitation are low. However, the very large electron/hole per photon quantum efficiencies observed for plasmonic devices fan the hope of future improvements through a deeper understanding of the processes involved and through better device engineering, especially of critical interfaces such as those between metallic and semiconducting nanophases (or adsorbed molecules). In this review, we focus on the physics and dynamics governing plasmon-derived hot charge carrier transfer across, and the electronic structure at, metal-semiconductor (molecule) interfaces, where we feel the barriers contributing to low efficiencies reside. We suggest some areas of opportunity that deserve early attention in the still-evolving field of hot carrier transmission from plasmonic nanostructures to neighboring phases.

Collaboration


Dive into the Phillip Christopher's collaboration.

Top Co-Authors

Avatar

Suljo Linic

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leo DeRita

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaoqing Pan

University of California

View shared research outputs
Top Co-Authors

Avatar

A. Marimuthu

Indian Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge